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The boundary between the A and B phases of superfluid *He possesses many interesting features due
to the drastically different bulk order parameters. We study the transmission and Andreev reflection of
ballistic wave packets of excitations incident on the A4-B phase boundary. We find that the 4-B phase
boundary is magnetically active and capable of converting an unpolarized incident wave packet into par-
tially polarized transmitted and Andreev-reflected wave packets. We also consider equilibrium proper-
ties due to bound states and resonances of excitations localized near the phase boundary. These states
contribute to magnetic correlations and to mass and spin currents flowing in the plane of the interface.

PACS numbers: 67.50.Fi

Superfluid 3He is known to exist in two quite distinct
phases: the 4 and the B phase. In each phase the total
spin S and the orbital angular momentum L of the Coop-
er pairs are unity. However, in the 4 phase the pairs are
oriented along a common angular momentum direction /.
The result is that the 4 phase is highly anisotropic, in
contrast to the B phase which is isotropic in the absence
of orienting fields. '

It is well known that the quasiparticle excitations in
the bulk superfluid phases of *He are coherent superposi-
tions of particles and holes. Depending on the domi-
nance of the particle (hole) character of a wave packet
of such excitations, it will propagate parallel (antiparal-
lel) to the Fermi velocity vr. A richer behavior is found
when the order parameter undergoes a rapid variation on
a length scale comparable to the coherence length. Such
a variation occurs, for example, at the 4 -B phase bound-
ary where the two phases coexist.>>

In the present work we consider a planar 4-B phase
boundary lying in the x =0 plane. We model the exact
profile of the order parameter* by a piecewise-constant
complex vector

. {AAIE' (1+ig)W for x <0
Alxk) = Agk for x>0, O
where @i +igy=f+iz, W=g, =@ x$y=—7¥ as illus-

trated in Fig. 1. This correctly describes the known
asymptotic orientation of the order parameter in equilib-
rium and provides an adequate description for phenome-
na occurring on length scales large compared with the
thickness A==3¢ of the phase boundary. We note that
the d vector of the 4 phase is related to W via
w=R(6,i) d, where the parameters 6 and fi of the rota-
tion matrix R follow from minimization of the dipole en-
ergy.*’

In what follows we determine waves of low-energy ex-
citations moving in the order parameter, Eq. (1). We
work to quasiclassical accuracy, in the limit of a low ex-
citation density, and neglect quasiparticle collisions.®’
With these restrictions the advanced, retarded, and Kel-
dysh propagators {g”,g%,g%} of the quasiclassical theory

all obey the same transportlike differential equation®®:

ivek-Vg(R,t:k,€) + [#,g) -+ (i/2)[13,8,g]+ =0. (2)

Apart from satisfying the above equation g?“? is subject

to the necessary condition of analyticity in the upper
(lower) complex ¢ plane. In equilibrium (8,8 =0) the
propagators are related by gk =tanh(e/2T)[gR —gd],
where T is the absolute temperature. Furthermore,?
glgly = —n’=glgd

The elementary excitations described by g are charac-
terized by four labels specifying particles and holes with
spin up and down. A complete specification furthermore
requires ¢, the deviation from the Fermi energy, and k a
unit vector giving the direction of the excitation momen-
tum at position R and time ¢ (further details are given in
Ref. 8).

It follows that g, #, and 73 are 44 matrices, the last
two given in 2% 2 sub-block form as

1 0
» BT 0 -1

3
A= 3 A,(x,k)oic?.
n=1

€ A

= -at -

with

We note that Eq. (2) is deceptively simple. In com-
ponent form it represents 16 coupled complex partial

FIG. 1.

Schematic cross sections of the Fermi sphere
(dashed lines) indicating the maximum and minimum bulk
gaps on either side of the 4-B interface.
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differential equations. However, because we work with a piecewise-constant order parameter the general solution of Eq.
(2) may be derived in closed form; on either side of the interface it is given by the compact formula

d é“ei{[k(m)—k(—m)]-k—mtl élzei{[k(m)+k(_w)]'k_°"}
-~ o )
g(R,t;k,e)-f_m-d;K(w) Cpre ~HK@+K(=a)]- Rttt &, —illk(@) —k(=a)]-R+ar) K(—w). G)

This result, which lies at the core of this paper, re-
quires some explanation; details of its derivation may be
found in Ref. 9. Firstly, the wave vectors k(w) are given
by k(w) =kE (w)/vr, where = E(w) are eigenvalues of
#+(0/2)7; and E(w)=[(e+w/2)>—A-A*12 The
phases k(o) —k(—o)]-R * ot describe waves of exci-
tations propagating along =k, while the phases
[k(0)+k(—®)]-R = wt describe nonpropagating waves
due to their different symmetry under o — — .

Secondly, the transformation K (@) has the properties

K(o)[#+ (0/2) 3]k (0) =E(0) 13, K(0)K(0)=1.
It is given by

[E(w+w/2)t3+#
Q2F (0)[E(0) +o/2+ e} /2

Thirdly, the 2x2 blocks Cy., depend on which side of
the interface they are evaluated [like all the other quan-
tities appearing in Eq, (3)]. It is important to note that
they are functions of kxR and w.

If we consider propagating waves incident from the B
phase onto the interface (k- X <0), then in the 4 phase
these can only lead to waves propagating away from the
interface, provided |e| > max(Ag,A4|kxP|). This im-
plies that in the A4 phase,

Ciy=Cs =Cs,=0.
Furthermore, correct matching of the two pieces of the
propagator at the interface, x =0, requires

C.'fl =Cfie —i(kxbfl)-R ,
C‘.‘rﬁn -Creme s
where the weights Cfi and C3, are independent of R.
Given that bf =0 for waves incident from the B phase,
the remaining b vectors follow from continuity in y and z
at the interface at x =0.

The weight C$, determines the character of the incom-
ing quasiparticles, namely the shape of their wave pack-
et, their number, and their spin. Similarly C{} charac-
terizes the transmitted quasiparticles. The Andreev
reflection excitations'® with group velocity approximate-
ly antiparallel to k are described by C%. The off-
diagonal weights %, and C%, correspond to the interfer-
ence between the incoming and Andreev-reflected quasi-
particle and do not represent propagating modes. All in-
itial information of the scattering problem is contained
in C%. Indeed, the remaining 22 blocks C5,,Cf} can,
from continuity, be expressed in terms of C%, with the
use of the matrix products K?(w)K4(®) and K4(— o)
x K8(— w) representing the overlap of the transforma-

tion matrices K(w). Expanded details are given in
Ref. 9.

K(w)=

—i(kxb2,) R

Having outlined our procedure for solving Eq. (2), we
now proceed to discuss some physical implications of the
scattering process. In the steady-state limit, || < | €],
the ratios (u=0,x,y,z)

T4, =tr(Cfio*)/tr(CH) ,
4

RE, = —tr(C5 ") tr(CH) @
characterize the transmission and Andreev reflection of
excitations incident from the B phase into the A4 phase.
The ratios T% and R have the direct interpretation as
the probabilities that an incident quasiparticle will be
transmitted and Andreev reflected: 7¢h+R& =1.

It may come as a surprise to note that even an unpo-
larized incident beam, tr(C% o) =0, yields a partially
polarized beam of transmitted and Andreev-reflected ex-
citations (see, however, Ref. 6). This is illustrated in
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FIG. 2. Transmission of excitations from the B phase into
the A phase for an unpolarized incoming beam, tr(Cf;o) =0.
The ratio T¢h and the magnitude T¢ of the vector part,
Té, =Td (kxWw),/|kxWw|, are plotted as functions of scaled
energy ¢/Ap=1. The orientation of the incident k vector is
given in nonstandard polar coordinates by k =cos6y £
+5infx (cosgx §+singx Z). Curves are shown with 6 =135°,
ox =0°,40°,60°,90° for T6h and 6x=135°, ¢r=15°37°,
60°,90° for T¢:.
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Fig. 2 where we present T4 and the magmtudc T4 of
the vector part of T4, for a range of incident k vectors
versus scaled energy ¢/Ag. The orientation of the vector
part of T4, is along kXxW, where W is given in Eq. (1).
Note that a necessary condition for total Andreev
reflection of waves from the B phase into the A4 phase is
Ag< |e]| <AL IkXII hence T'¢% =0 in this regime as il-
lustrated in the lower part of Fig. 2. We draw attention
to the fact that even for equal bulk gaps, Ap =A4 [kx7|
G.e., kl=+1 /~/3), Andreev reflection occurs.

By a change of perspective we can consider not the sit-
uation above, where a wave packet of excitations scatters
off a stationary A4-B interface, but rather a situation in
which the interface progresses through the system. It
seems natural that the moving interface will, by the
mechanism described above, change the polarization of
the system.

For a better understanding of recent experiments on
the A-B phase boundary® we present next our findings
on the magnetic properties of a static interface. In gen-
eral such an interface is expected to be magnetically ac-
tive due to the lack of time reversal of the 4 phase. Be-
cause the order parameter of Eq. (1) is unitary,
AxiA* =0, no finite magnetization is found in equilibri-
um.!! There exists, however, a substantial contribution
to the magnetic correlations which arises from bound
states and resonances of quasiparticles localized in the
vicinity of the 4-B phase boundary. These and other
equilibrium properties of the interface are in the infor-
mation carried by the retarded (advanced) quasiclassical
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FIG. 3. Energies of bound states localized in the vicinity of
the A-B phase boundary for a wide range of k orientations.
The innermost and outermost lines indicate schematically
er = A(k) where A(Kk) lS the minimum of the bulk gaps. All
bound-state energies e5" lie within these lines and are given by
the solid curves. Arrows indicate where the branches of the
bound state terminate. Curves are shown for ¢ =10° (upper
hemisphere) and ¢« =190° (lower hemisphere) vs polar angle
k. The orientation of k is given in nonstandard coordinates by
Kk =cosOx & +sinby (cosgxy +singiZ).
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propagators evaluated at @ =0. The retarded equilibri-
um propagators follow from Eq. (3) with the 2x2 blocks
Con =7i8(0) Cpnn as follows:

Ciu=1, Cyp=-—1
and
Cy1 =0, C;,=0 for i'R/ii> 0,

C21#0, Ci2=0 for iR/i£<0

Assuming ¢ > 0, lEx > 0, one obtains, for example,

2iEBx/vrk,
1 sze R

g8 (x;k;€) = nik® [O —1 ]KB for x>0,

5

1 0
. K4 for x <0.

R (x-k ¢) =ik
8eq (ka; 6) miK [Cﬁ‘]e —ZiEAX/UFEx

In the interval |¢| <min(AB,AA |kx7|) the parts of
geq proportional to C§,C#, decay exponentially with dis-
tance, leaving for | x | — oo the bulk propagator 7i#/E.
The contmulty of g® at x=0 fixes the unknowns
ct,Cc% uniquely in terms of the 2 X2 blocks of the over-
lap K“K5.° The exponentially decaying parts of the re-
tarded propagator correspond to bound states of quasi-
particles confined to the A4 B phase boundary.!?> The
bound states have energies ex given by poles of C1 2 and
C%, on the real e axis. They exist when the k vector
satisfies the inequalities

min(A3,A5 |kxT|?) > (e5)2> Apla k- W F a, | kxw|]

£/bg

FIG. 4. Solid-angle-ﬁ-integrated density spectral function
n(x,e) (full line) and spin spectral function —m,(x,é)
(dashed line) vs scaled energy €/Ap for x =0.
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and take the following analytic form:

Ebi' -Ag(azﬁw'vial |E><“AI| )/[(01 _ABE'VAI)Z'F(azi'AB IIEXV“II )2]”2, (6)

where a;+ia; =A k- (¢1+idn), as defined in Eq. (1).

As is clearly demonstrated in Fig. 3 the bound-state
energies are quite close to the effective gap, min(Ag,
A4lkxl|), for a wide range of k orientations. Under
these circumstances (see, however, Ref. 13) the exact
profile of the order parameter near x==0 becomes ir-
relevant and the bound states extending over many
coherence lengths are correctly described by e, as stat-
ed above.

It should be noted that the E)ound states, labeled by lE,
are excluded from a cone of k vectors corresponding to
arc cos(k-X) S17°.

The upper diagonal 2% 2 block of gﬁ,(”) determines the
spectral functions for the density and the spin:

n —tr[(gé'q —gﬁl)n]/Zm'

and
mg -tr[(ge‘!l —géf,)“c“]/Zni .

Any “golden-rule”-related calculation may be expressed
in terms of convolutions of these spectral functions and
as such they provide important ingredients for the under-
standing of the 4-B phase boundary. Note that the ad-
vanced propagator appearing above, g;j], does not contain
new information and may be found from the following
general symmetries:®

2R, t;k, €) =[r:3gR R, ;k,€) 31T,
gR(R,1; —k, — €) =[12g4(R, £k, €) 7,1 7.

In Fig. 4 we show the results for the solid-angle-lz-
integrated spectral functions n(x,e)= Jda/an)n(x;
k,e) and m(x,¢e) =f(dQ/4n)m(x;k,e) evaluated at the
interface x =0; we find that m(0,¢) is oriented along
I=—y.

Note that we have presented these quantities for ¢ > 0
only, since they are even in ¢. Besides the density and
the spin spectral functions we have also calculated the
mass current j, and the spin current j,,. We predict
that both of these observables have finite components
Jz=0 and j,,#0, j,,#0, and j,,>0. The origins of these
nonvanishing currents are the bound states and reso-
nances generated by the matching of a rank-1 tensor (4
phase) to a rank-3 tensor (B phase).

To summarize, in this paper we have presented an out-

line of the ways the A4-B phase boundary can influence
both ballistic excitations and equilibrium properties.
The calculational details and further results will be pub-
lished elsewhere.
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