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Implications of long tails in the distribution of mutant effects
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Abstract

Long-tailed distributions possess an infinite variance, yet a finite sample that is drawn from such a distribution has a finite
variance. In this work we consider a model of a population subject to mutation, selection and drift. We investigate the implications
of a long-tailed distribution of mutant allelic effects on the distribution of genotypic effects in a model with a continuum of
allelic effects. While the analysis is confined to asexual populations, it does also have implications for sexual populations. We
obtain analytical results for a selectively neutral population as well as one subject to selection. We supplement these analytical
results with numerical simulations, to take into account genetic drift. We find that a long-tailed distribution of mutant effects
may affect both the equilibrium and the evolutionary adaptive behaviour of a population.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

When genetic material is duplicated, during the pro-
uction of offspring, copying errors—mutations—may
ccur. Non-mutated alleles are passed on identically to

he next generation while mutated alleles differ from
he parental genes. In the present paper, we concern
urselves with fundamental properties of the distribu-

ion of mutations and exclusively address the case of a
opulation of asexual organisms.

∗ Corresponding author. Tel.: +44 1273 678559.
E-mail address:d.waxman@sussex.ac.uk (D. Waxman).

Individuals are taken to be characterised by a si
phenotypic trait that is controlled by many loci. We
sume that the allelic mutation rate is sufficiently sm
that offspring are highly unlikely to differ from the
parent by two or more mutations. In this case, the
tire genome can be thought of as a single haploid lo
Thus, independent of the level of ploidy and the n
ber of loci we shall treat individuals as consisting o
single haploid locus with a very large number of
ferent possible alleles. We note that results for a si
haploid locus may apply to a sexual population, if
neglect of linkage disequilibria is valid (which has
be established), since when it is, each individual
be viewed as a collection alleles at haploid asexua
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in a genetic background consisting of the other alleles
(see, e.g.[1]).

We adopt a model with a continuum of alleles
[2] and in such models, alleles are typically labelled
by a single, continuous, real parameter,x, where
∞ > x > −∞. Mutant values ofx are randomly cho-
sen from a continuous distribution and consequently
can take a continuum of possible values. Since there is
zero probability of obtaining precisely the same value
twice, from a continuous probability distribution,
every mutant allele differs from all alleles that were
present in the population prior to the mutation. In
the present work, the value ofx is interpreted as the
genotypic component of a phenotypic trait[1,2]. On
account of this, we shall refer tox as the genotypic
effect(or sometimes just the effect) of the allele.

If a parent, with effectxp, undergoes a mutation,
then the probability that the resulting mutant has an ef-
fect in the infinitesimal range (x, x+ dx) is given by
M(x|xp) dxwhereM(x|xp) is the distribution of mutant
effects. The functionM(x|xp) is a probability density,
and, as such, is non-negative and normalised to unity:
M(x|xp) ≥ 0,

∫
M(x|xp)dx = 1 (here and elsewhere,

all integrations with unspecified limits cover the range
−∞ to ∞). In general,M(x|xp) is a weighted average
(equivalently, a mixture) over the distributions of mu-
tant allelic effects at the different loci controlling the
trait and as such, may have a very different shape from
those of the underlying loci[3,4].

We shall follow most previous analyses by taking
M f
x
M fin-
i led
f hat
w and
n stri-
b their
e ,
i ong-
t dis-
t ber
o aits
c

fi-
n
i f
a bu-

tion, the variance of the sample isfinite. Thus, from
the viewpoint of summary statistics offinite samples,
there is nothing manifestly pathological about such dis-
tributions. Some of the ways of viewing the signifi-
cance of long tails in a distribution are discussed in
Appendix A.

The objective of the present work is, principally, to
re-examine the equilibrium properties of continuum
of alleles models involving mutation and selection,
without making the implicit assumption that the dis-
tribution of mutant effects is short-tailed. Long-tailed
distributions have been extensively discussed in the
past (see, e.g.[7]). However, to the best of our knowl-
edge a long-tailed distribution has not been introduced
into the model or the context we discuss in the current
paper and therefore its functional role has not been
addressed. Thus, the whole objective of the present
paper may be summarised as looking for significant
differences, for population genetics and evolution,
between the outcome of the conventional, short-tailed,
distributions of mutational effects, with the outcome
arising from mutational distributions possessing long
tails.

It seems to us that the objection that: because the
genome is finite, the distribution of mutant effects
has finite moments of all orders and hence is, nec-
essarily, short-tailed, is not compelling. The number
of different possible mutations is an astronomically
large number, and the overwhelming proportion of
mutations will never be observed. Thus, for practi-
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(x|xp) to be aunimodal(single peaked) function o
. In contrast to previous analyses (see, e.g.[5]), we take
(x|xp) to possess long tails. The feature—or de

ng property—of long-tailed distributions (also cal
at- or heavy-tailed distributions in the literature) is t
hile the distributions are necessarily non-negative
ormalised to unity—as indicated above, such di
utions always have an infinite variance and even
xpected value may not be well defined[6]. We note

n passing, that discrete distributions can also be l
ailed, so there may also be applications of such
ributions to meristic traits, such as offspring num
r bristle number, as well as to the continuous tr
onsidered here.

The fact that a probability distribution has an in
ite variance does not mean themeasuredvariance is

nfinite. Rather, we note that in asampleconsisting o
finite number of terms taken from such a distri
al purposes, the distribution of mutant effects co
ave all the appearances of a long-tailed distributio
ut to a large but finite cutoff value—that is ne

ikely to be even remotely approached and obser
herefore, we view questions about the form of
istribution of mutant effects—such as whether it p
esses long tails or not—as meriting further theo
al and experimental investigation, rather than sim
eing decided a priori. In the case where mutat
re observed, whose effects are a number of stan
eviations (say three or more) from the mean of
ampling distribution, one might suspect that a sh
ailed distribution of mutant effects may not be an
ropriate description. We note that there are gen
ays to assess whether a finite data sample colle

rom experiments is best described by a long-ta
istribution, for example, by using the Hurst ind

8].
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2. Form of the distribution of mutant effects

To perform an investigation of reasonable length
into the implications of a distribution of mutant ef-
fects,M(x|xp), that has long-tails, we are forced to
make restrictions on the form this distribution can take.
The restrictions we adopt still allow, however, a va-
riety of different forms ofM(x|xp). In particular, we
do not consider the most general long-tailed distribu-
tion, but base our analysis on a family of non-negative,
normalised, symmetric and unimodal functions,f (x),
whose form we shall shortly give. There are several
different forms thatM(x|xp) can take even within this
class, namely (i)M(x|xp) = f (x− xp) [1,2]. Because
of the dependence ofM(x|xp) on x− xp, this can be
termed a “translationary” invariant distribution, since
the same translation (i.e. shift) in bothx andxp leads
to the distribution being unaltered; (ii)M(x|xp) = f (x)
[9]. The final state of a mutation,x, is unrelated to the
parental effect,xp, and this is termed the “House of
Cards” model of mutation, in analogy to the final, de-
molished state of a house of cards being unrelated to
its initial, ordered, state; (iii)

M(x|xp) = f (x− γxp) (1)

[10] where 1≥ γ ≥ 0. This is called the “regression”
model of mutation, in view of the apparent connection
of the argument off (•) with linear regression. Clearly
the regression model of mutation can interpolate be-
t riant
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Fig. 1. The functionf (x) that is used in distribution of mutant effects,
Eq. (2), is plotted as a function of genotypic effect,x, and “shape”
parameterα. The parameterm, which is a measure of the width of
the distribution, has been set to unity.

The form off (x) adopted here is characterised by
two parameters, namelym andα, which appear in a
Fourier integral representation off (x):

f (x) =
∫

exp(−ikx)g(k) dk

2π
, g(k) = exp(−mα|k|α)

(2)

where ∞ > m > 0 and 2> α > 0. Since g(−k) =
g(k) andg(0) = 1, the functionf (x), as defined above,
is manifestly real, symmetric and normalised to unity.
However, it is by no means obvious thatf (x) is non-
negative, as it necessarily must be to be a probability
density, and unimodal, as we have assumed. It has been
established, however, that anf (•) of the form of Eq.
(2) is indeed non-negative and unimodal[13] and is an
example of a “Levy stable distribution”.

The parameterα in Eq. (2) controls aspects of the
shape of the distribution but only a few values ofα
lead to an integral in Eq.(2) that can be evaluated in a
relatively simple form. The casesα = 1 and 2 lead to
straightforward integrations, and yield the well-known
distributions associated with Cauchy and Gauss and are
given inAppendix B. Some other values ofα lead to
integrals which may be evaluated in terms of special
functions and examples of these may also be found in
Appendix B(where a total of four representative forms
for f (x) are given). InFig. 1, we plot the distribution,
f (x) of Eq.(2), as a function ofx, for a range ofα but
with the parametermset to unity.

p-
t en
ween the House of Cards and translationary inva
odels of mutation, by choosing the “regression”

ameterγ to be 0 or 1 and we shall carry out most of
nvestigations in terms of this model for general val
f γ.

In principle we could incorporate a systematic mu
ional bias into mutation, by incorporating a param
(where∞ > b > −∞) into the argument off (•), so

hat, e.g. in the regression mutation model, we wo
avef (x− γxp − b). However, there have been so
ecent studies of the interplay between biased m
ion and selection[11,12] and we shall not deal wit
he considerable added level of complexity associ
ith bias here, except as an aside, for the case of s

ive neutrality. We could also incorporate an asymm
f the functionf (•) about its maximum, that cannot
imply expressed as a mutational bias, but shall n
o here.
The parameterα also determines the asym
otic behaviour of the family of distributions giv
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in Eq.(2):

f (x) ∼ Aα|x|−α−1, for |x| −→ ∞, (2> α > 0)

Aα = 1

π
mα sin

(πα
2

)
Γ (1 + α) (3)

[6] whereΓ (•) denotes Euler’s gamma function[14]
and we shall make use of these results later. The small
x properties off (x) are contained in the first few non-
zero derivatives at the origin:

f (0) = Γ (1/α)

παm
, (4)

d2

dx2
f (x)

∣∣∣∣∣
x=0

= −Γ (3/α)

παm3
≡ − 1

m2

Γ (3/α)

Γ (1/α)
f (0).

(5)

All distributions of the form Eq.(2), with α < 2,
have an infinite variance, since we can write Var(x) =∫
x2f (x) dx = −[d2g(k)/dk2]k=0 and this diverges.

Equivalently, the absence of a finite variance forα < 2
arises because of the slow power-law decrease of the
distributions at large|x|, Eq. (3), so e.g. the large|x|
contribution is proportional to

∫∞
x2 x−α−1 dx, which

diverges. It is precisely in this sense that the distribu-
tions of the type in Eq.(2) with α < 2 have long tails.

The parametermcontrols the range ofxover which
f (x) changes appreciably. There are several, informa-
tive ways of seeing this. (i) The maximum value off (x)
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Table 1
The range ofx, aroundx = 0, where 50% of the normalisation of the
functionf (x) of Eq.(2) resides can be written as|x| ≤ c(α)m

α c(α)

0.50 1.28
0.75 1.07
1.00 1.00
1.25 0.98
1.50 0.97
1.75 0.96
2.00 0.95

The Table give the results of numerical calculation ofc(α).

for α < 2, we cannot classify the distributions of Eq.
(2) by their variance, we could characterise them by
the region around the maximum where an apprecia-
ble proportion of mutations lie. The range ofx, around
x = 0, where 50% of the normalisation off (x) resides
can be written|x| ≤ c(α)m. In Table 1, the results of
numerical calculation forc(α) are presented.

Evidently, 50% of mutant effects lie within a range
∼mof x = 0, again pointing tomas a useful indicator
of the scale ofx over whichf (x) changes appreciably.

A common choice made in the literature for the dis-
tribution of mutant effects is a Gaussian (correspond-
ing, in Eq. (2), to α = 2). The variance of the Gaus-
sian is an empirically determined quantity, which varies
from trait to trait and from species to species. A typi-
cal value of the variance is 2m2 ∼ 0.05, i.e.m ∼ 0.2
[15] and although we do not study a Gaussian distribu-
tion here, we shall use the valuem = 0.2 for all of the
numerical studies presented below.

3. Neutral case

A long-tailed distribution of mutant effects mani-
fests itself most strongly in a situation where mutation
is the only evolutionary force acting on a population.
We therefore, consider a large (effectively infinite) pop-
ulation of haploid asexual organisms with one locus,
where there is no genetic drift and individuals are not
subject to selection. The lifecycle of the population,
t with
n ra-
t ion
o l-
l is
t

ccurs atx = 0 and maxx f (x) = f (0) is given abov
n Eq. (4). The dependence of maxx f (x) onm−1 in-
icates that increasingm reduces the maximum val
f f (x), and because of normalisation and unimo

ty of f (x), this decrease can only arise because
esultant broadening of the tails of the distribution.
rom Eq.(5), it follows that in the vicinity ofx = 0,
e havef (x) � f (0) × (1 − (1/2)(x/�)2 + · · ·) where

he characteristic scale of variation (i.e. the “rang
f f (x) is � and � = m

√
Γ (1/α)/Γ (3/α). Note tha

is an increasing function ofα and writing� = �(α)
e have�(1/2) � 0.09 m, �(1) � 0.71 m and�(2) �
.41 m, i.e. forα � 1,� isO(m). (iii) From the analyti
al forms forf (x) in Appendix B, we have the follow
ng results. Whenα = 1,m equals the “half width a
alf height”—i.e. the value ofx that results in the dis

ribution having half its maximum value. Forα = 2,
he variance of the distribution equals 2m2. (iv) Since,
hat takes place in discrete generations, begins
ewly born individuals (juveniles) and is: (i) matu

ion of juveniles to adulthood, but with no select
perating, (ii) production of offspring by adults, fo

owed shortly by the death of all adults. Mutation
aken to occur during the production of offspring.



D. Waxman, J. Feng / Physica D 206 (2005) 265–274 269

We adopt the somewhat flexible model of mutation
given by the regression model described above, and
summarised in Eq.(1).

3.1. Equilibrium distribution of an infinite
population

The distribution (probability density) of genotypic
effects in one generation is denoted byϕ(x) and in the
following generation, is denoted byϕ′(x). It satisfies

ϕ′(x) = (1 − u)ϕ(x) + u

∫
f (x− γy)ϕ(y) dy (6)

where the trait mutation rate isu. Eq. (6) follows di-
rectly from considerations of genes being perfectly
transmitted to the next generation with probability
1 − u (first term on the right-hand-side) and being im-
perfectly transmitted—i.e. containing a mutation, with
probabilityu (second term on the right-hand-side).

Let us define moments ofϕ(x) byxn = ∫
xnϕ(x) dx,

and use a prime to denote the corresponding moment in
the following generation. For any value ofα < 2, long-
tailed distributions do not yield a dynamical equation
for x2 that is meaningful. To see this, multiply Eq.(6)
by x2 and integrate over allx. This involves the quan-
tity

∫ ∫
x2f (x− γy)ϕ(y) dx dy and this can be shown

to diverge because
∫
x2f (x) dx diverges. By contrast,

a meaningful equation for ¯x can be defined forα > 1:
namelyx̄′ = [1 − u(1 − γ)]x̄. This equation coincides
with previously found results[10] and x̄ approaches
a
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Fig. 2. The parameterσ(α, γ) of Eq. (8) is plotted as a function of
the “shape” parameterα. The quantityσ(α, γ) ×m is a measure of
the width of the equilibrium distribution of genotypic effects in the
selectively neutral case.

family of f (•) given in Eq.(2), is

ϕ̂(x) =
∫

eikx exp

(
− mα

1 − γα
|k|α

)
dk

2π
. (7)

Thus, the mutation distributions of Eq.(2) lead, at equi-
librium, to a distribution of genotypic effects with the
same shape parameterα, but with a “scale” parame-
ter changed fromm, in the mutation distribution, to
σ(α, γ)m in the distribution of genotypic effects, where

σ(α, γ) = 1

(1 − γα)1/α
. (8)

Note that for anyγ > 0 and anyα > 0, we have
σ(α, γ) > 1, thus, in accordance with intuition, the
model of mutation adopted leads to an equilibrium dis-
tribution of genotypic effects that isbroader than the
distribution of mutant effects. Furthermore, because the
equilibrium distribution of genotypic effects is charac-
terised by the same shape parameter, it has the same
asymptotic power-law behaviour as the distribution of
mutant effects, Eq.(3). Fig. 2 contains a plot of the
“width” of the equilibrium distribution of allelic ef-
fects,σ(α, γ), as a function ofα, for several values of
γ.

It is possible to include mutational bias in the se-
lectively neutral case of this Section. A distribution of
mutant effects of the formf (x− γy − b) with non-zero
bias parameter,b, leads, using the method ofAppendix
C, to an equilibrium distribution of genotypes effects
n equilibrium value of 0 whenγ < 1. However, the
quation for ¯x is generally not meaningful when t
hape parameter,α, appearing in the distribution
utant effects, Eq.(2), lies in the rangeα ≤ 1. The
roblem arises because we cannot give a definite

o
∫
xf (x) dx when α ≤ 1. It may be tempting, be

ause of symmetry off (•), to take
∫
xf (x) dx = 0 but

f f (•) is long-tailed, and possesses a non-zero lev
symmetry, then forα ≤ 1,

∫
xf (x) dx could actually

iverge.
Despite the divergence of some or all of the mom

rising from Eq.(6), we have established that in a c
inuous time approximation to Eq.(6), the distribution
(x) equilibrates for anyγ < 1 (seeAppendix C). The
quilibrium distribution is independent of the trait m

ation rateu—although the time taken to achieve eq
ibrium does depend onu. In Appendix C, it is shown
hat the exact equilibrium solution to Eq.(6), for the
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given byϕ̂(x− b/(1 − γ)) whereϕ̂(x) is the distribu-
tion of an unbiased problem given in Eq.(7). The mod-
ified argument of̂ϕ(x) simply corresponds to a shift in
position of the maximum of the distribution fromx = 0
to x = b/(1 − γ).

3.2. Equilibrium distribution of a finite population

The infinite population results illustrate some con-
sequences of a long-tailed distribution of mutant ef-
fects. However, the resulting distribution of genotypic
effects does have an infinite variance. This means the
infinite population results cannot be directly used to
make predictions for large but finite populations, in
contrast to the results following from a short-tailed
distributions of mutant effects. To understand the im-
plications of long-tailed distributions in finite popula-
tions, we have investigated the behaviour of a large but
finite population, from individually based numerical
simulations. For the population size and mutation rates
considered, the speed of the underlying dynamics are
largely determined by the mutation rate. The popula-
tion was thus simulated over a time interval that is large
compared with the inverse of the mutation rate,u−1.
Over such a time interval the population approaches a
highly stochastic “equilibrium” state associated with
a finite population. This approach is illustrated in
Fig. 3.

Although the population approaches a peaked distri-
bution at long times, there are always a small fraction of
o idly
d
I s,
i , but
m

4

ero
l ove.
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g t the
s sta-
b
a e,
o of

Fig. 3. A histogram of frequencies of different genotypic effects is
plotted as a function of genotypic effect,x, and timet (measured in
generations). This figure shows the behaviour of the distribution of
genotypic effects,ϕ(x), over a time interval that is long compared
with the inverse of the trait mutation rate,u−1, when there is no
selection acting. The histogram was determined from a numerical
simulation of a finite population of individuals and is normalised, at
each time, so the area under the histogram is unity. Also plotted on
the same figure is the distribution describing an infinite population at
equilibrium (solid curve). The parameter values used wereu = 10−2,
m = 0.2, γ = 0.5, N = 104 and thex values, at timet = 0, were
drawn from a Gaussian distribution, with mean 2 and variance of
0.1.

phenotype (see, e.g.[5]). We take[16]

w(x) = exp(−sx2) (9)

wheres is a positive parameter that is a measure of the
intensity of selection and the optimal allelic value—the
one leading to the maximum ofw(x)—has been taken
to lie at x = 0. Selection acts during the maturation
stage (i) of the lifecycle given in Section3.

The dynamical equation describing the evolution
of the distribution of genotypic effects follows from
Eq. (6) by replacing ϕ(x) on the right-hand-side
of this equation by the distribution after selection:
w(x)ϕ(x)/

∫
w(x)ϕ(x) dx, hence

ϕ′(x) = (1 − u)w(x)ϕ(x)+u ∫ f (x−γy)w(y)ϕ(y) dy∫
w(x)ϕ(x) dx

.

(10)

We have investigated the behaviour of a finite popu-
lation, from individually based numerical simulations
and the results, at long times, are illustrated inFig. 4
for the caseα = 1.

The distribution is observed to be far more narrowly
peaked than the corresponding distribution in the neu-
utliers, as exemplified by the line of bins that rap
evelop at the extremities of thex range (atx = ±5).

ncreasing the range ofx values, at fixed bin width
s observed to not change the existence of outliers

erely cause a reduction in their frequency.

. Inclusion of selection

We now investigate the implications of a non-z
evel of selection acting in the model considered ab
election acts on viability, which depends on a sin
henotypic trait characterising individuals and wh
enetic component is determined by the allele a
ingle locus in question. Fitness is taken to be of a
ilising viability type. The viability,w(x), of individu-
ls of a particular trait valuex arises from an averag
ver environmental effects, of viability as a function
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Fig. 4. A histogram of frequencies of different genotypic effects is
plotted as a function of genotypic effect,x, and timet (measured
in generations). This figure shows the behaviour of the distribution
of genotypic effects,ϕ(x), over a time interval that is long com-
pared with the inverse of the trait mutation rate,u−1, when selection
is acting on the population. The histogram was determined from a
numerical simulation of a finite population of individuals and is nor-
malised, at each time, so the area under the histogram is unity. The
parameter values used wereu = 10−2,m = 0.2,γ = 0.5,s = 0.025,
N = 104 and thexvalues, at timet = 0, were drawn from a Gaussian
distribution, with mean 2 and variance of 0.1.

tral case (s = 0) that was considered in Section3.1and
illustrated inFig. 4. As a consequence of the narrow-
ness of the distribution, it is hard to see any evidence,
at the extremes of the range of allelic value, of the long
tails of the distribution of mutant effects, in contrast to
what was seen in the neutral case, when the population
was finite.

Let us analyse the properties of the equilibrium so-
lution arising from Eq.(10). The equilibrium solution
obeys

ϕ̂(x) = u

∫
f (x− γy)w(y)ϕ̂(y) dy

w̄− (1 − u)w(x)
,

w̄ =
∫
w(x)ϕ̂(x) dx. (11)

We can estimate the behaviour of the solution of Eq.
(11), when mutation is weak compared with selection,
as characterised byuΓ (1/α)/(παm2) � s. When this
applies, the House of Cards approximation[17] yields
ϕ̂(0) ∝ αms/(uΓ (1/α)), i.e. in this case,̂ϕ(0) is very
large, and the bulk of the normalisation ofϕ̂(x) lies
very close tox = 0. Thus, in contrast to the neutral
case, the shape of the equilibrium distribution of allelic
effects,ϕ̂(x), in the presence of selection, does not gen-

erally take a similar profile tof (x). The behaviour in
the opposite limit, where selection is weak compared
with mutation, is much harder to estimate, however, we
can note that in this case the form ofϕ̂(x) will not be
approximately Gaussian, in contrast to what is found
whenf (•) has a finite second moment[1,18].

Apart from the approximate local behaviour
of ϕ̂(x), we can determine its leading asymptotic
behaviour. To obtain this, note that when|x| � 1/

√
s,

we can neglectw(x) appearing in the denominator
on the right-hand-side of Eq.(11). We shall assume
1/

√
s � m, as is often typical in quantitative traits

[15]. Then, when |x| � 1/
√
s, we can replace

f (x− γy) by its asymptotic form, Eq.(3). It follows
that ϕ̂(x) � uAα

∫ |x− γy|−α−1w(y)ϕ̂(y) dy/w̄ �
uAα|x|−α−1

∫
w(y)ϕ̂(y) dy/w̄, i.e.

ϕ̂(x) ∼ uAα|x|−α−1 ≡ u× asymptotic form off (x).

(12)

The general result of Eq.(12), for the tails of the distri-
bution ofϕ̂(x), has two implications. (i) At large|x|, the
distributionϕ̂(x) approaches 0 with an identical power-
law behaviour to that off (x), and since this large|x| be-
haviour is responsible for the infinite variance off (x), it
follows thatϕ̂(x) is, itself, a long-tailed distribution and,
as an automatic consequence, has an infinite variance.
(ii) The strength of the long tails, i.e. the coefficient,u,
of f (x) in Eq.(12), can be small. Typical mutation rates
in asexual populations, whereu represents the mutation
r l
p ta-
t
l w
w eme
i
t .
( an-
t s a
p
h tails
o the
d ong
t
s ite
v

eak,
i he
ate of the trait, can be of order 10−2 (while in sexua
opulations, whereu corresponds to the allelic mu

ion rate,u can be of order 10−5) [15]. Thus, while the
ong tails are present in̂ϕ(x), they are present with lo
eight, since selection rapidly removes such extr

ndividuals. A value ofx, that is randomly picked from
he distributionϕ̂(x), will lie in the region where Eq
12) is applicable, with a probability that is subst
ially smaller thanu. As a consequence, it require
opulation of size much larger thanu−1 in order to
ave an appreciable number of individuals in the
f the distribution and corresponding to outliers of
istribution. This is the reason the result of the l

ime simulations illustrated inFig. 4do not exhibit any
ignificant outlier effects associated with the infin
ariance of the distribution.

Let us note that in the case where selection is w
n the senses � 1, we cannot generally make t
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quadratic approximation to the fitness function of Eq.
(9), that is commonly made in the literature, namely
w(x) � 1 − sx2. The reason is that this approximation
leads, in Eq.(11), to the asymptotic form,φ(x) ∼ con-
stant×|x|−α−3, i.e. a result that corresponds to afinite
second moment and is thus incompatible with the exact
leading behaviour of Eq.(12), which yields an infinite
second moment.

We end this Section by noting that census, in Eq.
(10), is taken to occur after mutation has occurred, but
before selection. If we censused immediately after se-
lection, then the distribution describing the population
is w(x)ϕ(x)/

∫
w(x)ϕ(x) dx and, because of the factor

w(x), this is a short tailed distribution. Thus, every gen-
eration, the distribution that describes the population al-
ternates between being long- and short-tailed and here
we have concentrated on the anomalous, long-tailed
aspect, of this.

5. Summary and discussion

Distributions of mutant effects with long tails have,
as we have pointed out, infinite variances. We have in-
dicated how a long-tailed distribution of mutant effects
determines the asymptotic properties of the equilibrium
distribution of allelic effects describing an infinite pop-
ulation, and how this distribution will also have long
tails—and hence an infinite variance associated with
it. In the case of a finite population, it has been seen
t e in-
d tails
o d,
a un-
l h
u

u-
t tri-
b ical
i cu-
l bu-
t the
r re
o wer
t d or
s ery
p ing
fi

Fig. 5. A plot of the mean genotypic effect,E[X], as a function of
time, for two populations that were subject to stabilising selection of
identical strength. Both populations had, initially, the same distribu-
tion of allelic effects. The populations differed in the distribution of
mutant effects; one had a short tailed (Gaussian) distribution while
the other had a long-tailed (Cauchy) distribution. The figure was ob-
tained from individual based simulations of the two populations. The
parameter values used wereu = 10−3,m = 0.2,γ = 0.5, s = 0.025
andN = 104. The different rates of adaptation exhibited in the figure
are due to the different values of the shape parameter,α, of the two
mutation distributions, and e.g. replacingm in just the short-tailed
distribution by 0.8 or 1.2 m does not qualitatively affect the slower
rate of adaptation associated with this distribution.

In Fig. 5, we plot the mean genotypic effect,E[X], as
a function of time,t, for simulations of two populations.
Initially, both populations were identically distributed,
but one has a short-tailed distribution of mutant effects,
while the other has a long-tailed distribution. The pop-
ulations have an initial mean genotypic effect that is
some distance from the fitness optimum (which lies at
x = 0) and are thus maladapted. The figure indicates
that the range of the tails of the distribution of mu-
tant effectscanhave a significant effect on the rate of
evolutionary adaptation of a population.

We can therefore conclude that the length of tails of
the distribution of mutant effects can affect both equi-
librium and dynamical properties of a population, but
the latter requires further investigation.
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Apart from the influence that long-tailed distrib
ions of mutant effects have on the equilibrium dis
ution of allelic effects, there may also be dynam

mplications of such mutation distributions. In parti
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Appendix A

In this Appendix we give a number of ways of view-
ing probability distributions that possess so-called long
tails.

Firstly, if we repeatedly draw random numbers (i.e.
x’s) from such a distribution, then while many of the
numbers will be close to the mode of the distribution,
some of the numbers will have substantial deviations
from the mode. This is in sharp contrast to a Gaus-
sian distribution, or any other distribution with a finite
variance, where virtually none of the random numbers
picked from this distribution deviate from its mode by
more than a few standard deviations.

Another way of looking at long-tailed distributions
is to consider the statistics of the sample mean,Sn =∑n
i=1 xi/n of a finite number ofx’s that are indepen-

dently drawn from such a distribution. If, for increas-
ingly larger sample sizes,n, the distributions of theSn,
are compared, then long-tailed distributions result in
anomalous behaviour, compared with short-tailed (i.e.
finite variance) distributions. In particular, the sample
means of a long-tailed distribution may not settle down
(converge) to a definite value as the sample size,n,
is increased. Similarly when the variances of theSn
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of random variables from a long-tailed distribution may
have a distribution that approaches a limiting form
[6].

Appendix B

In this Appendix we give four representative forms
for the functionf (x) of Eq. (2) of the main text. The
casesα = 1 and 2 lead to straightforward integrations.
We have found that writingf (x) of Eq.(2)in the equiva-
lent formf (x) = ∫∞

0 cos(kX) exp(−kα) dk/(mπ) with
X = x/m, leads to integrals which for some values of
α may be evaluated with the computer algebra pack-
age Maple®. These values includeα = 1/2, 4/3, 3/2,
5/3, . . . although some of the resulting expressions are
long. The valuesα = 1/2 and 4/3 are relatively simple
and are given below. WithC(z) andS(z) Fresnel inte-
grals and2F2(a, b; c, d; z) generalised hypergeometric
functions[14] and with

X = |x|/m, F (X) = mf (x)

we have

F
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enerally decrease with sample sizen, as 1/n, as they
o for a short tailed distribution.

A third feature of long tailed distributions is tha
um of independently chosen random variables f
uch a distribution will not approach a normal dis
ution as the number of terms in the sum is increa
hus, the Central Limit Theorem (i.e. the asympt
pproach of the distribution of a sum of random v
bles to a Gaussian) breaks down for such distribut
here are, however, extensions of the Central L
heorem which indicate the way suitably scaled s
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ppendix C

In this Appendix, we provide some theoretical
ults that are used in the main text.

We begin with Eq.(6) which we Fourier transform
y multiplying by eikx and integrating over allx. With
(k) = ∫

eikxϕ(x) dx the characteristic function ass
iated withϕ(x), we find

′(k) = (1 − u)ψ(k) + ug(k)ψ(γk) (13)

hereg(k) = ∫
eikxf (x) dx.
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Eq. (13) has a unique equilibrium solution,̂ψ(k),
which satisfiesψ̂(k) = g(k)ψ̂(γk). It is natural to
solve this equation by iteration. The first few iter-
ates, starting from an arbitrary initial characteristic
function, ψ0(k), are: ψ1(k) = g(k)ψ0(γk), ψ2(k) =
g(k)ψ1(γk) = g(k)g(γk)ψ0(γ2k). Continuing in this
way, we obtain ψN (k) = [

∏N
n=0 g(γ

nk)]ψ0(γNk).
Since, for allγ < 1, limN→∞ ψ0(γNk) = ψ0(0) = 1
by virtue of ψ0(k) being a characteristic func-
tion, it follows that ψ̂(k) = limN→∞ ψN (k) =∏∞
n=0 g(γ

nk). Thus, the equilibrium distribu-
tion of genotypic effects, ϕ̂(x), is thus given
by

ϕ̂(x) =
∫

eikxψ(k)
dk

2π
=
∫

eikx
[ ∞∏
n=0

g(γnk)

]
dk

2π
.

(14)

Usingg(k) of Eq. (2) in this equation quickly leads to
Eq.(7) of the main text.

To establish convergence of Eq.(13) to the
equilibrium solution, we approximate this equa-
tion by a continuous time equation:∂ψ(k, t)/∂t =
−uψ(k, t) + ug(k)ψ(γk, t). SettingT = ut, ψ(k, t) =
e−T χ(k, T ) we find χ(k, T ) obeys ∂χ(k, T )/∂T =
g(k)χ(γk, T ) with solution χ(k, T ) = χ(k,0) +
g(k)

∫ T
0 χ(γk, s1) ds1. Iterating yields χ(k, T ) =

χ(k,0) + g(k)Tχ(γk,0) + · · ·. Proceeding in this way,
we infer thatχ(k, T ) = ∑∞

j=0Cj(k)(T
j/j!)χ(γjk,0)

w
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W
ψ
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l
w
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