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Abstract

Long-tailed distributions possess an infinite variance, yet a finite sample that is drawn from such a distribution has a finite
variance. In this work we consider a model of a population subject to mutation, selection and drift. We investigate the implications
of a long-tailed distribution of mutant allelic effects on the distribution of genotypic effects in a model with a continuum of
allelic effects. While the analysis is confined to asexual populations, it does also have implications for sexual populations. We
obtain analytical results for a selectively neutral population as well as one subject to selection. We supplement these analytical
results with numerical simulations, to take into account genetic drift. We find that a long-tailed distribution of mutant effects
may affect both the equilibrium and the evolutionary adaptive behaviour of a population.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Individuals are taken to be characterised by a single
phenotypic trait that is controlled by many loci. We as-
When genetic material is duplicated, during the pro- sume that the allelic mutation rate is sufficiently small
duction of offspring, copying errors—mutations—may that offspring are highly unlikely to differ from their
occur. Non-mutated alleles are passed on identically to parent by two or more mutations. In this case, the en-
the next generation while mutated alleles differ from tire genome can be thought of as a single haploid locus.
the parental genes. In the present paper, we concernThus, independent of the level of ploidy and the num-
ourselves with fundamental properties of the distribu- ber of loci we shall treat individuals as consisting of a
tion of mutations and exclusively address the case of a single haploid locus with a very large humber of dif-
population of asexual organisms. ferent possible alleles. We note that results for a single
haploid locus may apply to a sexual population, if the
neglect of linkage disequilibria is valid (which has to
"+ Corresponding author. Tel.: +44 1273 678550. be established), since when it is, each individual can
E-mail addressd.waxman@sussex.ac.uk (D. Waxman). be viewed as a collection alleles at haploid asexual loci
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in a genetic background consisting of the other alleles
(see, e.g[1]).

We adopt a model with a continuum of alleles
[2] and in such models, alleles are typically labelled
by a single, continuous, real parametgy, where
o0 > x > —oo. Mutant values ok are randomly cho-
sen from a continuous distribution and consequently
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tion, the variance of the sample fimite. Thus, from
the viewpoint of summary statistics hite samples
there is nothing manifestly pathological about such dis-
tributions. Some of the ways of viewing the signifi-
cance of long tails in a distribution are discussed in
Appendix A

The objective of the present work is, principally, to

can take a continuum of possible values. Since there isre-examine the equilibrium properties of continuum

zero probability of obtaining precisely the same value
twice, from a continuous probability distribution,
every mutant allele differs from all alleles that were
present in the population prior to the mutation. In
the present work, the value afis interpreted as the
genotypic component of a phenotypic trfit2]. On
account of this, we shall refer to as the genotypic
effect(or sometimes just the effect) of the allele.

If a parent, with effectxp, undergoes a mutation,
then the probability that the resulting mutant has an ef-
fect in the infinitesimal rangex(x + dx) is given by
M (x|xp) dx whereM (x|xp) is the distribution of mutant
effects. The functiorM (x|xp) is a probability density,
and, as such, is non-negative and normalised to unity:
M (x|xp) > 0, [ M(x|xp)dx = 1 (here and elsewhere,
all integrations with unspecified limits cover the range
—o0 t0 00). In general M(x|xp) is a weighted average
(equivalently, a mixture) over the distributions of mu-
tant allelic effects at the different loci controlling the
trait and as such, may have a very different shape from
those of the underlying log¢B,4].

We shall follow most previous analyses by taking
M(x|xp) to be aunimodal(single peaked) function of
X. Incontrastto previous analyses (see,[6]), we take
M (x|xp) to possess long tails. The feature—or defin-
ing property—of long-tailed distributions (also called
fat- or heavy-tailed distributions in the literature) is that

of alleles models involving mutation and selection,
without making the implicit assumption that the dis-
tribution of mutant effects is short-tailed. Long-tailed
distributions have been extensively discussed in the
past (see, e.q7]). However, to the best of our knowl-
edge a long-tailed distribution has not been introduced
into the model or the context we discuss in the current
paper and therefore its functional role has not been
addressed. Thus, the whole objective of the present
paper may be summarised as looking for significant
differences, for population genetics and evolution,
between the outcome of the conventional, short-tailed,
distributions of mutational effects, with the outcome
arising from mutational distributions possessing long
tails.

It seems to us that the objection that: because the
genome is finite, the distribution of mutant effects
has finite moments of all orders and hence is, nec-
essarily, short-tailed, is not compelling. The number
of different possible mutations is an astronomically
large number, and the overwhelming proportion of
mutations will never be observed. Thus, for practi-
cal purposes, the distribution of mutant effects could
have all the appearances of a long-tailed distribution—
out to a large but finite cutoff value—that is never
likely to be even remotely approached and observed.
Therefore, we view questions about the form of the

while the distributions are necessarily non-negative and distribution of mutant effects—such as whether it pos-
normalised to unity—as indicated above, such distri- sesses long tails or not—as meriting further theoreti-
butions always have an infinite variance and even their cal and experimental investigation, rather than simply
expected value may not be well defingd. We note, being decided a priori. In the case where mutations
in passing, that discrete distributions can also be long- are observed, whose effects are a number of standard
tailed, so there may also be applications of such dis- deviations (say three or more) from the mean of the
tributions to meristic traits, such as offspring number sampling distribution, one might suspect that a short-
or bristle number, as well as to the continuous traits tailed distribution of mutant effects may not be an ap-
considered here. propriate description. We note that there are general
The fact that a probability distribution has an infi- ways to assess whether a finite data sample collected
nite variance does not mean threeasuredrariance is from experiments is best described by a long-tailed
infinite. Rather, we note that insampleconsisting of distribution, for example, by using the Hurst index
a finite number of terms taken from such a distribu- [8].
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2. Form of the distribution of mutant effects

To perform an investigation of reasonable length
into the implications of a distribution of mutant ef-
fects, M(x|xp), that has long-tails, we are forced to
make restrictions on the form this distribution can take.
The restrictions we adopt still allow, however, a va-
riety of different forms ofM (x|xp). In particular, we
do not consider the most general long-tailed distribu-
tion, but base our analysis on a family of non-negative,
normalised, symmetric and unimodal functiorféx),
whose form we shall shortly give. There are several
different forms thaiV/ (x|xp) can take even within this
class, namely (iM(x|xp) = f(x — xp) [1,2]. Because
of the dependence a#(x|xp) onx — xp, this can be
termed a “translationary” invariant distribution, since
the same translation (i.e. shift) in batrandxp leads
to the distribution being unaltered; (1Y (x|xp) = f(x)

[9]. The final state of a mutation, is unrelated to the
parental effectxp, and this is termed the “House of
Cards” model of mutation, in analogy to the final, de-

molished state of a house of cards being unrelated to

its initial, ordered, state; (iii)

M(x|xp) = f(x — yxp) 1)
[10] where 1> y > 0. This is called the “regression”
model of mutation, in view of the apparent connection
of the argument of (e) with linear regression. Clearly

the regression model of mutation can interpolate be-
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Fig. 1. Thefunctiory(x)thatis used in distribution of mutant effects,
Eqg. (2), is plotted as a function of genotypic effegf,and “shape”
parameter.. The parametem, which is a measure of the width of
the distribution, has been set to unity.

The form of f(x) adopted here is characterised by
two parameters, namely and «, which appear in a
Fourier integral representation ¢{x):

d
76) = [ ewtikey. ) = expntIk)
@

whereoco > m > 0 and 2> o > 0. Since g(—k) =

g(k) andg(0) = 1, the functionf(x), as defined above,

is manifestly real, symmetric and normalised to unity.
However, it is by no means obvious thAtx) is non-
negative, as it necessarily must be to be a probability
density, and unimodal, as we have assumed. It has been

tween the House of Cards and translationary invariant established, however, that gife) of the form of Eq.

models of mutation, by choosing the “regression” pa-
rametety to be 0 or 1 and we shall carry out most of our

investigations in terms of this model for general values
of y.

In principle we could incorporate a systematic muta-
tional bias into mutation, by incorporating a parameter
b (whereco > b > —o0) into the argument of (e), SO
that, e.g. in the regression mutation model, we would
have f(x — yxp — b). However, there have been some

(2) is indeed non-negative and unimogtE8] and is an
example of a “Levy stable distribution”.

The parametet in Eqg. (2) controls aspects of the
shape of the distribution but only a few valuesof
lead to an integral in E(2) that can be evaluated in a
relatively simple form. The cases= 1 and 2 lead to
straightforward integrations, and yield the well-known
distributions associated with Cauchy and Gauss and are
given in Appendix B Some other values ef lead to

recent studies of the interplay between biased muta- integrals which may be evaluated in terms of special

tion and selectionl11,12] and we shall not deal with

functions and examples of these may also be found in

the considerable added level of complexity associated Appendix B(where a total of four representative forms
with bias here, except as an aside, for the case of selecfor f(x) are given). InFig. 1, we plot the distribution,

tive neutrality. We could also incorporate an asymmetry
of the functionf(e) about its maximum, that cannot be

simply expressed as a mutational bias, but shall not do

so here.

f(x) of EQ.(2), as a function ok, for a range ofx but
with the parametem set to unity.

The parametera also determines the asymp-
totic behaviour of the family of distributions given
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in Eq. (2): Table 1
The range ok, aroundx = 0, where 50% of the normalisation of the
f(x) ~ Aa|x|—0‘—1, for |x| — oo, 2>a>0) function f(x) of Eq. (2) resides can be written &g < c(a)m
o c(a)
A= %m“ sin(5) M1 +) @ om0 128
0.75 107
[6] whereI'(e) denotes Euler's gamma functigh4] 1.00 100
and we shall make use of these results later. The small1.25 098
X properties off(x) are contained in the first few non- iig ggz_)
zero derivatives at the origin: 200 495
f(O) _ F(l/Ol) ’ (4) The Table give the results of numerical calculatior (af).
aom
for o < 2, we cannot classify the distributions of Eq.
& r'G/a) 1 I'(3/a) (2) by t_heir variance, we cquld characterise them py
—— f(x) =— T ="""> f(0). the region around the maximum where an apprecia-
dx =0 am m? I"(1/e) ble proportion of mutations lie. The rangexofaround
(5) x = 0, where 50% of the normalisation ¢{x) resides
can be writtenx| < c¢(a)m. In Table 1 the results of
All distributions of the form Eq(2), with « < 2, numerical calculation for(«) are presented.
have an infinite variance, since we can write Wk Evidently, 50% of mutant effects lie within a range
[ x2f(x)dx = —[d?g(k)/dk?]i=0 and this diverges. ~mof x = 0, again pointing tan as a useful indicator
Equivalently, the absence of a finite variancedog 2 of the scale ok over which f(x) changes appreciably.
arises because of the slow power-law decrease of the A common choice made in the literature for the dis-
distributions at largex|, EqQ. (3), so e.g. the largéx| tribution of mutant effects is a Gaussian (correspond-
contribution is proportional tg"> x? x~*~1 dx, which ing, in Eq.(2), to « = 2). The variance of the Gaus-

diverges. It is precisely in this sense that the distribu- sianisanempirically determined quantity, which varies

tions of the type in Eq(2) with @ < 2 have long tails. from trait to trait and from species to species. A typi-
The parametem controls the range of over which cal value of the variance isiZ ~ 0.05, i.e.m ~ 0.2

f(x) changes appreciably. There are several, informa- [15] and although we do not study a Gaussian distribu-

tive ways of seeing this. (i) The maximum valuefdk) tion here, we shall use the value= 0.2 for all of the

occurs att = 0 and max f(x) = f(0) is given above = numerical studies presented below.

in Eq. (4). The dependence of max(x) onm™1 in-

dicates that increasing reduces the maximum value

of f(x), and because of normalisation and unimodal- 3. Neutral case

ity of f(x), this decrease can only arise because of a

resultant broadening of the tails of the distribution. (ii) A long-tailed distribution of mutant effects mani-

From Eq.(5), it follows that in the vicinity ofx = 0, fests itself most strongly in a situation where mutation

we havef(x) ~ £(0) x (1— (1/2)(x/£)? + - - -)where is the only evolutionary force acting on a population.

the characteristic scale of variation (i.e. the “range”) We therefore, consider alarge (effectively infinite) pop-

of f(x) is ¢ and ¢ = m/T(1/a)/T(3/). Note that ulation of haploid asexual organisms with one locus,

¢ is an increasing function af and writing¢ = £(«) where there is no genetic drift and individuals are not
we havef(1/2) >~ 0.09m, £(1) ~ 0.71 m and¢(2) ~ subject to selection. The lifecycle of the population,
1.41m,i.e.fore 2 1,¢is O(m). (iii) From the analyti- that takes place in discrete generations, begins with

cal forms for f(x) in Appendix B we have the follow- newly born individuals (juveniles) and is: (i) matura-
ing results. Whermx = 1, m equals the “half width at  tion of juveniles to adulthood, but with no selection
half height"—i.e. the value of that results in the dis-  operating, (ii) production of offspring by adults, fol-
tribution having half its maximum value. For= 2, lowed shortly by the death of all adults. Mutation is
the variance of the distribution equala? (iv) Since, taken to occur during the production of offspring.



D. Waxman, J. Feng / Physica D 206 (2005) 265-274

We adopt the somewhat flexible model of mutation
given by the regression model described above, and
summarised in Eq1).

3.1. Equilibrium distribution of an infinite
population

The distribution (probability density) of genotypic
effects in one generation is denotedddy) and in the
following generation, is denoted lpy(x). It satisfies

(6)

where the trait mutation rate is Eq. (6) follows di-
rectly from considerations of genes being perfectly
transmitted to the next generation with probability
1 — u (first term on the right-hand-side) and being im-
perfectly transmitted—i.e. containing a mutation, with
probabilityu (second term on the right-hand-side).
Letus define moments @{x) by x” = [ x"¢(x) dx,

¢0) = (1 — we(x) +u / o= y)e(y) dy

and use a prime to denote the corresponding momentin

the following generation. For any value®f< 2, long-
tailed distributions do not yield a dynamical equation
for x2 that is meaningful. To see this, multiply E@)
by x? and integrate over all. This involves the quan-
tity [ [ x2f(x — y»)e(y) dx dy and this can be shown
to diverge becaus¢ x2 f(x) dx diverges. By contrast,
a meaningful equation for can be defined far > 1:
namelyx” = [1 — u(1 — y)]x. This equation coincides
with previously found result§l0] andx approaches
an equilibrium value of 0 whegr < 1. However, the
equation forx is generally not meaningful when the
shape parametes;, appearing in the distribution of
mutant effects, Eq(2), lies in the rangex < 1. The
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Fig. 2. The parameter(c, y) of Eq. (8) is plotted as a function of
the “shape” parameter. The quantityo(w, ¥) x m is a measure of
the width of the equilibrium distribution of genotypic effects in the
selectively neutral case.

family of f(e) givenin Eq.(2), is

o0 = [ & exp(—

Thus, the mutation distributions of E@) lead, at equi-
librium, to a distribution of genotypic effects with the
same shape parameter but with a “scale” parame-
ter changed fromm, in the mutation distribution, to
o(a, y)m in the distribution of genotypic effects, where

o

“ |k|°‘)
-V

dk
27

o (7)

1

o(a,y) = ®)

(L — v
Note that for anyy > 0 and anya > 0, we have
o(a, y) > 1, thus, in accordance with intuition, the

model of mutation adopted leads to an equilibrium dis-

problem arises because we cannot give a definite valuetribution of genotypic effects that isroaderthan the

to [xf(x)dx whena < 1. It may be tempting, be-
cause of symmetry of (e), to take [ xf(x) dx = O but

if f(e)islong-tailed, and possesses a hon-zero level of
asymmetry, then fox < 1, [ xf(x) dx could actually
diverge.

Despite the divergence of some or all of the moments
arising from Eq(6), we have established that in a con-
tinuous time approximation to E(), the distribution
¢(x) equilibrates for any < 1 (seeAppendix Q. The
equilibrium distribution is independent of the trait mu-
tation rateu—although the time taken to achieve equi-
librium does depend ou. In Appendix G it is shown
that the exact equilibrium solution to E(6), for the

distribution of mutant effects. Furthermore, because the
equilibrium distribution of genotypic effects is charac-
terised by the same shape parameter, it has the same
asymptotic power-law behaviour as the distribution of
mutant effects, Eq(3). Fig. 2 contains a plot of the
“width” of the equilibrium distribution of allelic ef-
fects,o (e, ), as a function ofy, for several values of
Y.
It is possible to include mutational bias in the se-
lectively neutral case of this Section. A distribution of
mutant effects of the fornfi(x — yy — b) with non-zero
bias parameteh, leads, using the method Appendix
C, to an equilibrium distribution of genotypes effects
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given byp(x — b/(1 — y)) where@(x) is the distribu-
tion of an unbiased problem given in E@). The mod-
ified argument ofy(x) simply corresponds to a shift in
position of the maximum of the distribution fram= 0
tox=5b/(1—y).

3.2. Equilibrium distribution of a finite population

The infinite population results illustrate some con-
sequences of a long-tailed distribution of mutant ef-
fects. However, the resulting distribution of genotypic
effects does have an infinite variance. This means the

infinite population results cannot be directly used to Fig. 3. A histogram of frequencies of different genotypic effects is

make prEdiCtionS for Iarge but finite popUIationS' in plotted as a function of genotypic effegt,and timet (measured in
contrast to the results following from a short-tailed generations). This figure shows the behaviour of the distribution of
distributions of mutant effects. To understand the im- genotypic effectsp(x), over a time interval that is long compared
plications of long-tailed distributions in finite popula- Witlh tt*_‘e i”"f_rse C;fhthi”tait mutation (;a;e,—l,_ W*:jef” there is no- |
- . . . selection acting. € nistogram was determined irom a numerical
t!OﬂS, we hav.e mves“ga.ted. the behaviour of a Iarg_e but simulation of agfinite populagtion of individuals and is normalised, at
finite populatlon, from mdN'dua”y based numerical each time, so the area under the histogram is unity. Also plotted on
simulations. For the population size and mutation rates the same figure is the distribution describing an infinite population at
considered, the speed of the underlying dynamics are equilibrium (solid curve). The parameter values used weel0~2,
largely determined by the mutation rate. The popula- =02, 7 = 05, N = 10" and thex values, at time = 0, were
tion was thus simulated over a time interval that is Iarge drawn from a Gaussian distribution, with mean 2 and variance of
compared with the inverse of the mutation ratel. 01
Over such atime interval the population approaches a phenotype (see, e.ff]). We take[16]
highly stochastic “equilibrium” state associated with 2
a finite population. This approach is illustrated in W) = €Xp(=sx?) ©)
Fig. 3 wheresis a positive parameter that is a measure of the
Although the population approaches a peaked distri- intensity of selection and the optimal allelic value—the
bution atlong times, there are always a small fraction of gne |eading to the maximum af(x)—has been taken
outliers, as exemplified by the line of bins that rapidly to |ie atx = 0. Selection acts during the maturation

develop at the extremities of therange (atx = +5). stage (i) of the lifecycle given in Sectidh

Increasing the range of values, at fixed bin widths, The dynamical equation describing the evolution
is observed to not change the existence of outliers, but of the distribution of genotypic effects follows from
merely cause a reduction in their frequency. Eq. (6) by replacing ¢(x) on the right-hand-side

of this equation by the distribution after selection:
w(x)p(x)! [ w(x)e(x) dx, hence

J() = (1 — wwx)p)+u [ flx—yy)wy)e(y) dy
We now investigate the implications of a non-zero [ w(x)e(x) dx '
level of selection acting in the model considered above.

. o ) ) (10)
Selection acts on viability, which depends on a single
phenotypic trait characterising individuals and whose We have investigated the behaviour of a finite popu-
genetic component is determined by the allele at the lation, from individually based numerical simulations
single locus in question. Fitness is taken to be of a sta- and the results, at long times, are illustratedrig. 4
bilising viability type. The viability,w(x), of individu- for the casex = 1.
als of a particular trait value arises from an average, The distribution is observed to be far more narrowly
over environmental effects, of viability as a function of peaked than the corresponding distribution in the neu-

4. Inclusion of selection
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erally take a similar profile t¢f(x). The behaviour in
the opposite limit, where selection is weak compared
with mutation, is much harder to estimate, however, we
can note that in this case the formaffx) will not be
approximately Gaussian, in contrast to what is found
when f(e) has a finite second momejit, 18].

Apart from the approximate local behaviour
of @(x), we can determine its leading asymptotic
behaviour. To obtain this, note that whigth > 1/./s,
we can neglectw(x) appearing in the denominator
on the right-hand-side of Eq11). We shall assume
1//s > m, as is often typical in quantitative traits

Fig. 4. A histogram of frequencies of different genotypic effects is [15]. Then, _When 1] >>.1/\/E’ we can replace
plotted as a function of genotypic effeat, and timet (measured f(x - )/}i) by Its asymptotic forml' Eq(?i)' It fO"(lWS
in generations). This figure shows the behaviour of the distribution that — @(x) >~ uAq [ 1x — yy|~* tw(y)@(y) dy/w =~

of genotypic effectsp(x), over a time interval that is long com- uAa|x|*°‘*1f w(y)@(y)dy/w, i.e.
pared with the inverse of the trait mutation ratel, when selection

is acting on the population. The histogram was determined from a o(x) ~ uAa|x|7°‘71 = u x asymptotic form off(x).
numerical simulation of a finite population of individuals and is nor-

malised, at each time, so the area under the histogram is unity. The (12)
parameter values used were= 1072, m = 0.2,y = 0.5,s = 0.025,

N = 10*and thexvalues, attime = 0, were drawn froma Gaussian ~ The general result of E¢12), for the tails of the distri-

distribution, with mean 2 and variance of 0.1. bution of@(x), has two implications. (i) At larggx|, the
distributiong(x) approaches 0 with an identical power-
law behaviour to that of (x), and since this largie| be-
haviour is responsible for the infinite variancefik), it
follows thatp(x) is, itself, along-tailed distribution and,
as an automatic consequence, has an infinite variance.
(i) The strength of the long tails, i.e. the coefficient,
of f(x)in Eq.(12), can be small. Typical mutation rates
in asexual populations, wheugepresents the mutation
rate of the trait, can be of order 18 (while in sexual
populations, wher@ corresponds to the allelic muta-
tion rate,u can be of order 10°) [15]. Thus, while the

tral case { = 0) that was considered in Secti8riand
illustrated inFig. 4. As a consequence of the narrow-
ness of the distribution, it is hard to see any evidence,
at the extremes of the range of allelic value, of the long
tails of the distribution of mutant effects, in contrast to
what was seen in the neutral case, when the population
was finite.

Let us analyse the properties of the equilibrium so-
lution arising from Eq(10). The equilibrium solution

obeys long tails are present ip(x), they are present with low

. [ fx = yy)w(»)@(y) dy weight, since selection rapidly removes such extreme

¢(x) =u w—1—-wwkx) individuals. A value ok, that is randomly picked from
the distributiong(x), will lie in the region where Eq.

w= / w(x)@(x) dx. (11) (12) is applicable, with a probability that is substan-

tially smaller thanu. As a consequence, it requires a
We can estimate the behaviour of the solution of Eq. population of size much larger tham? in order to
(11), when mutation is weak compared with selection, have an appreciable number of individuals in the tails
as characterised byI"(1/«)/(mram?) < s. When this of the distribution and corresponding to outliers of the
applies, the House of Cards approximatjbi] yields distribution. This is the reason the result of the long
¢(0) < ams/(ul'(1/a)), i.e. in this casep(0) is very time simulations illustrated iRig. 4do not exhibit any
large, and the bulk of the normalisation @fx) lies significant outlier effects associated with the infinite
very close tox = 0. Thus, in contrast to the neutral variance of the distribution.
case, the shape of the equilibrium distribution of allelic Let us note that in the case where selection is weak,
effects@(x), in the presence of selection, does notgen- in the senses « 1, we cannot generally make the
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guadratic approximation to the fitness function of Eq.
(9), that is commonly made in the literature, namely
w(x) ~ 1 — sx?. The reason is that this approximation
leads, in Eq(11), to the asymptotic formp(x) ~ con-
stantx |x|~*~3, i.e. a result that corresponds téirite
second moment and is thus incompatible with the exact
leading behaviour of Eq12), which yields an infinite
second moment.

We end this Section by noting that census, in Eq.
(10), is taken to occur after mutation has occurred, but
before selection. If we censused immediately after se-
lection, then the distribution describing the population
is w(x)g(x)/ [ w(x)e(x)dx and, because of the factor
w(x), this is a short tailed distribution. Thus, every gen-
eration, the distribution that describes the population al-

ternates between being long- and short-tailed and here

we have concentrated on the anomalous, long-tailed
aspect, of this.

5. Summary and discussion

Distributions of mutant effects with long tails have,
as we have pointed out, infinite variances. We have in-
dicated how a long-tailed distribution of mutant effects
determines the asymptotic properties of the equilibrium
distribution of allelic effects describing an infinite pop-
ulation, and how this distribution will also have long
tails—and hence an infinite variance associated with
it. In the case of a finite population, it has been seen
that when stabilising selection is operating, extreme in-
dividuals are rapidly removed by section and the tails
of the distribution will not be significantly populated,
and hence not significantly contribute to variance, un-
less (population siz&)u is not small compared with
unity.

Apart from the influence that long-tailed distribu-
tions of mutant effects have on the equilibrium distri-
bution of allelic effects, there may also be dynamical
implications of such mutation distributions. In particu-
lar, it is interesting to ask whether long-tailed distribu-
tions of mutant effects have a substantial effect on the
rate of adaptatiorof evolving populations. The nature
of the fitness landscape is likely to affect the answer
to this question—whether the landscape is rugged or
smooth. Here, we shall only give the results of a very
preliminary investigation, for the smooth, stabilising
fitness function of Eq(9).
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Fig. 5. A plot of the mean genotypic effedi[ X], as a function of
time, for two populations that were subject to stabilising selection of
identical strength. Both populations had, initially, the same distribu-
tion of allelic effects. The populations differed in the distribution of
mutant effects; one had a short tailed (Gaussian) distribution while
the other had a long-tailed (Cauchy) distribution. The figure was ob-
tained from individual based simulations of the two populations. The
parameter values used were= 103, m = 0.2,y = 0.5,5 = 0.025
andN = 10*. The different rates of adaptation exhibited in the figure
are due to the different values of the shape parametef, the two
mutation distributions, and e.g. replacingin just the short-tailed
distribution by 0.8 or 1.2 m does not qualitatively affect the slower
rate of adaptation associated with this distribution.

InFig. 5 we plotthe mean genotypic effedt] X], as
afunction of timet, for simulations of two populations.
Initially, both populations were identically distributed,
but one has a short-tailed distribution of mutant effects,
while the other has a long-tailed distribution. The pop-
ulations have an initial mean genotypic effect that is
some distance from the fitness optimum (which lies at
x = 0) and are thus maladapted. The figure indicates
that the range of the tails of the distribution of mu-
tant effectscanhave a significant effect on the rate of
evolutionary adaptation of a population.

We can therefore conclude that the length of tails of
the distribution of mutant effects can affect both equi-
librium and dynamical properties of a population, but
the latter requires further investigation.
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Appendix A

In this Appendix we give a number of ways of view-
ing probability distributions that possess so-called long
tails.

Firstly, if we repeatedly draw random numbers (i.e.
x’s) from such a distribution, then while many of the
numbers will be close to the mode of the distribution,
some of the numbers will have substantial deviations
from the mode. This is in sharp contrast to a Gaus-
sian distribution, or any other distribution with a finite
variance, where virtually none of the random numbers
picked from this distribution deviate from its mode by
more than a few standard deviations.

Another way of looking at long-tailed distributions
is to consider the statistics of the sample mefin=
>4 xi/n of a finite number ok's that are indepen-
dently drawn from such a distribution. If, for increas-
ingly larger sample sizes, the distributions of the,,,
are compared, then long-tailed distributions result in
anomalous behaviour, compared with short-tailed (i.e.
finite variance) distributions. In particular, the sample
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of random variables from along-tailed distribution may
have a distribution that approaches a limiting form
[6].

Appendix B

In this Appendix we give four representative forms
for the function f(x) of Eq. (2) of the main text. The
casesr = 1 and 2 lead to straightforward integrations.
We have found thatwriting (x) of Eg.(2) in the equiva-
lent form f(x) = fg’o coskX) exp(—k®) dk/(ms) with
X = x/m, leads to integrals which for some values of
o may be evaluated with the computer algebra pack-
age Mapl&. These values include = 1/2, 4/3, 3/2,
5/3,...although some of the resulting expressions are
long. The values = 1/2 and 4/3 are relatively simple
and are given below. Witli'(z) and S(z) Fresnel inte-
grals and F2(a, b; ¢, d; 7) generalised hypergeometric
functions[14] and with

means of a long-tailed distribution may not settle down X = ¥/, F(X) = mf(x)
(converge) to a definite value as the sample sige,
is increased. Similarly when the variances of the we have
4 1\ 1 21 4 1\ . /1 21
E (H) cos(E) [1— 2C< nuﬂ + E <E> sin <E> [1— ZS( 7'[4X>j| , a=1/2,
11 1
FX)= | 71+ X7 ==
3I'(3/4) 7 11 1 3 27x* 15 V27x? 13 17 5 3 27x*
4 2 2(?2’?2‘5’ 4 256) T 128T(3/4) 2(?2’ 12'4° 2 256)’ x=4/3
1 X2 5
T exp [—7] , a=2

are compared, for increasing valuesmpthey will not
generally decrease with sample sig@as 1/ n, as they
do for a short tailed distribution.

A third feature of long tailed distributions is that a
sum of independently chosen random variables from
such a distribution will not approach a normal distri-

bution as the number of terms in the sum is increased.

Thus, the Central Limit Theorem (i.e. the asymptotic
approach of the distribution of a sum of random vari-

ables to a Gaussian) breaks down for such distributions.

There are, however, extensions of the Central Limit
Theorem which indicate the way suitably scaled sums

Appendix C

In this Appendix, we provide some theoretical re-
sults that are used in the main text.

We begin with Eq(6) which we Fourier transform,
by multiplying by é* and integrating over ak. With
k)= [ & p(x) dx the characteristic function asso-
ciated withg(x), we find

W' (k) = (1 — u) (k) + ug(k)y(vk)
whereg(k) = [ €* f(x) dx.

(13)
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Eq. (13) has a unique equilibrium solutiomj(k),
which satisfiesy(k) = g(k)¥(yk). It is natural to
solve this equation by iteration. The first few iter-
ates, starting from an arbitrary initial characteristic
function, yo(k), are: yri(k) = g(k)yo(yk), va(k) =
(k)1 (vk) = g(k)g(vk)¥o(y®k). Continuing in_this
way, we obtain (k) = [[T)_o g(¥"K)]vo(r" k).
Since, for ally < 1, limy_ s Yo(yVk) = ¥o(0) = 1
by virtue of (k) being a characteristic func-
tion, it follows that (k)= limy_e ¥y(k) =
[T520g(y"k). Thus, the equilibrium distribu-
tion of genotypic effects,®(x), is thus given
by

~ _ ikx dk _ ikx -~ n dk
3 = [ euig = [ @ lelog(y k)} =,
(14

Using g(k) of Eq. (2) in this equation quickly leads to
Eq. (7) of the main text.

To establish convergence of Eq13) to the
equilibrium solution, we approximate this equa-
tion by a continuous time equatiory(k, r)/0t =
—up(k, t) + ug(k)y(vk, t). SettingT = ut, ¥(k, t) =
e Tx(k, T) we find x(k, T) obeys dx(k, T)/dT =
g(k)x(yk, T) with solution x(k, T) = x(k, 0) +
(k) [ x(vk,s1)ds1. lterating yields x(k, T) =
x(k, 0) + g(k)Tx(yk, O) + - - -. Proceeding in this way,
we infer that x(k, T) = >_32o C;(k)(T7/j") x(y'k, 0)
whereCo(k) = Landforj > 0,C;(k) = [Ti_g s(+"k).
We can thus write the solution forny(k,7) as
w(k, 1) = e 3% Ci(k)[(ut)! /¥ (y'k,0).  and
this may be verified to solve EQ(13). Since
lim ;o ¥(y/k, 0) = 1 and since[ [ g(¥"k)| < 1
we have a convergent series solution {iai, ). For
large t the series is dominated by largein which
casey(k, 1) = Coo(k)e™" Y72o(ut)! /j! = Coo(k) =
V(k) and we have convergence to the equilibrium
solution.
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