
BRIEF COMMUNICATION

doi:10.1111/j.1558-5646.2010.01074.x

IS LIFE IMPOSSIBLE? INFORMATION, SEX,
AND THE ORIGIN OF COMPLEX ORGANISMS
Joel R. Peck1,2 and David Waxman1

1School of Life Sciences, The University of Sussex, Brighton, BN1 9QG, United Kingdom
2E-mail: J.R.Peck@sussex.ac.uk

Received December 8, 2009

Accepted June 10, 2010

The earliest organisms are thought to have had high mutation rates. It has been asserted that these high mutation rates would

have severely limited the information content of early genomes. This has led to a well-known “paradox” because, in contemporary

organisms, the mechanisms that suppress mutations are quite complex and a substantial amount of information is required to

construct these mechanisms. The paradox arises because it is not clear how efficient error-suppressing mechanisms could have

evolved, and thus allowed the evolution of complex organisms, at a time when mutation rates were too high to permit the

maintenance of very substantial amounts of information within genomes. Here, we use concepts from the formal theory of

information to calculate the amount of genomic information that can be maintained. We identify conditions under which much

higher levels of genomic information can be maintained than previously considered possible among origin-of-life researchers. In

particular, we find that the highest levels of information are maintained when many genotypes produce identical phenotypes, and

when reproduction occasionally involves recombination between multiple parental genomes. There is a good reason to believe that

these conditions are relevant for very early organisms, and thus the results presented may provide a solution to a long-standing

logical problem associated with the early evolution of life.
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Eigen’s Paradox is a well-known logical problem associated with

the origin of complex organisms (Eigen 1971; Eigen and Schuster

1979; Maynard Smith and Szathmáry 1995). Experimental data

and logical considerations have led origin-of-life researchers to

believe that, early in the history of life, mutation rates were

much higher than they are in contemporary organisms (Eigen

1971; Eigen and Schuster 1979; Maynard Smith and Szathmáry

1995). According to Eigen and Schuster, this implies that the

maximum amount of information that could have been stably

encoded in the genomes of early organisms must have been

severely limited (Eigen 1971; Eigen and Schuster 1979). In con-

temporary organisms, the mechanisms of error prevention and

correction are quite complex. This leads to a “chicken-and-egg

problem.” How could life that is complex enough to suppress mu-

tation to low levels have evolved while mutation rates were quite

high?

Eigen and Schuster’s calculations are based on the idea that

if the genome with the best-possible fitness cannot be maintained

in a population, then “The information . . . would slowly seep

away until it is entirely lost” (Eigen and Schuster 1979). Using

this idea, Eigen and Schuster claimed that, for realistic parameter

values, a meaningful genetic sequence cannot include much

more than approximately 1/μ nucleotides, where μ is the per-

nucleotide mutation rate (Eigen and Schuster 1979). Assuming

four equally likely nucleotides, it requires 2 bits of information to

specify each nucleotide. Thus, Eigen and Schuster’s calculations

suggest that the maximum level of biological information that

can be stably maintained in the genomes of early organisms is

typically of the order of 2/μ bits. Here, the phrase “biological

information” refers to the information required by an organism to

survive and/or reproduce. A high level of biological information

makes high levels of biological complexity possible. That is
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to say, it facilitates the maintenance of complex adaptations,

including error-correcting mechanisms.

It has been pointed out that the maintenance of biological

complexity does not depend on the preservation of any partic-

ular genetic sequence; instead, biological complexity depends

only on the maintenance of phenotypes that confer relatively high

fitness (Huynen et al. 1996; Kun et al. 2005; Takeuchi et al.

2005). However, if phenotypes depend on genotypes, then the

biological-information content of the genome can still be calcu-

lated. For example, let us assume that every possible phenotype

can be uniquely placed into one of � distinct categories. Further-

more, each phenotype is produced by a different set of genotypes.

Assume that one of these phenotypic categories is associated with

a fitness value that is higher than that of any other phenotypic

category. In this case, if natural selection leads to individuals

of the fittest phenotypic class becoming very common in the

population, then from basic information–theoretic considerations

(Shannon 1948; Cover and Thomas 1991), it is reasonable to say

that the amount of biological information in the genome of a

typical population member is ∼log2(�) bits (here log2 denotes a

logarithm to base 2). Furthermore, if the only individuals present

in the population are members of the fittest phenotypic class, then

the genome of every population member can be said to contain

exactly log2(�) bits of biological information.

To further clarify these ideas, it is useful to consider the case

of a phenotype that consists of the amino acid sequence of a pro-

tein. Assume the protein is a chain of length A amino acids. If

20 different amino acids can be used in the construction of the

protein (as in contemporary organisms) then there are 20A differ-

ent possible amino acid sequences of length A. Thus in this case

there are � = 20A distinct phenotypes. If natural selection is suf-

ficiently effective that the only individuals found in a population

are members of the fittest phenotypic class, and hence produce

proteins with the best possible amino-acid sequence, then, as it

takes log2(20A) bits of information to specify this best-possible

sequence, it is clearly sensible to say that the genome of each

individual contains log2(20A) bits of biological information.

Two studies that used the phenotypic approach to biological

complexity, described above, have reported criteria for maintain-

ing a high level of biological complexity that are different from

those calculated by Eigen and Schuster. However, for plausible

parameter values, these differences were found to be relatively

modest (Kun et al. 2005; Takeuchi et al. 2005). Here, we show

that there are conditions under which the phenotypic approach

leads to the possibility of much more biological information be-

ing maintained in a population, for a given mutation rate, than

is suggested by Eigen and Schuster’s calculations (Eigen 1971;

Eigen and Schuster 1979). These conditions include the process

of recombination among genomes, and the situation where many

genotypes produce the same phenotype. Encouragingly, there is

a good reason to think that these conditions are relevant for

very early organisms (Huynen et al. 1996; Woese 1998; Wilke

2001; Wilke et al. 2001; Lehman 2003; Santos et al. 2003, 2004;

Codoner et al. 2006; Szathmáry 2006; Sanjuan et al. 2007; Soll

et al. 2007; Sardanyes et al. 2008).

The idea that, very early in the history of life, recombination

occurred between genomes (i.e., sexual reproduction occurred)

is absent in the formulations of Eigen and Schuster. However,

the possibility of recombination occurring within populations of

early organisms has now been widely accepted by the community

of origin-of-life researchers (Woese 1998; Lehman 2003; Santos

et al. 2003; Santos et al. 2004; Szathmáry 2006; Soll et al. 2007).

Sex and recombination can be induced via complex evolved mech-

anisms, as in many contemporary organisms. However, sex can

also result from much more primitive mechanisms, which are

more likely to be relevant for the earliest organisms. For example,

in the earliest stages of the development of life on Earth, the pri-

mordial organisms may have consisted of self-replicating linear

polymers that were not contained within a cell membrane. This

situation is similar to the process within a polymerase chain re-

action (PCR) machine. It is well known that recombination tends

to occur during PCR; some partially formed offspring polymers

become detached from their parent molecules, and then, as a re-

sult of homology, attach to another parent molecule, followed by

the completion of replication (Meyerhans 1990). As we will see,

the incorporation of sex and recombination can have enormous

effects on the amount of information that can be stably maintained

in a population in the face of high rates of mutation.

The model we will study here assumes truncation selection.

Under truncation selection, an “ideal genotype” exists and any

genotype that differs from the ideal genotype by less than a given

number of genetic changes is as fit as an individual with the ideal

genotype, whereas all individuals with other genotypes have zero

fitness. Truncation selection is, essentially, a form of synergis-

tic epistasis, as described by Kondrashov, and others (Kimura

and Maruyama 1966; Crow and Kimura 1979; Kondrashov 1988;

Peck and Waxman 2000). It is well known that, under syner-

gistic epistasis, sex and recombination can confer large benefits,

allowing (in some circumstances) for nearly maximal levels of

fitness, despite a high genomic rate of deleterious mutations. This

is exactly what occurs in the model presented here.

To the best of our knowledge, the fitness advantages of sex,

when the fitness landscape is synergistic, have never previously

been invoked in an attempt to solve Eigen’s Paradox. At first

glance, it may seem certain that synergistic epistasis will be ef-

fective in this context. However, there is a complication. Trun-

cation selection implies a certain amount of genetic redundancy,

as it occurs only when multiple genotypes exist that all lead to

a relatively high level of fitness. However, redundancy decreases

the information-carrying capacity of the genome. This is obvious
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if we consider the extreme case in which all genotypes generate

exactly the same phenotype. In this case mutations can never have

a deleterious effect on fitness. However, this does not eliminate

Eigen’s Paradox, because it is extremely unlikely that the one and

only phenotype that can be coded by the genome will happen

to be a genome that confers a high level of fitness and/or a low

mutation rate.

What we show in this work is that, despite the complication

just described, there is an intermediate level of genetic redundancy

that can confer a high level of fitness in the face of a high mutation

rate, while still allowing for much more information to be stably

maintained in the genome than would be expected from Eigen and

Schuster’s calculations (Eigen 1971; Eigen and Schuster 1979).

As we will see, this advantage of genetic redundancy is maxi-

mized when genetic material from multiple individuals is often

combined, when offspring are produced. That is, the advantages

of genetic redundancy are maximized by the occurrence of sexual

reproduction.

Our work is closely related to work that has been carried

out by a variety of other theorists. These include the biologists

mentioned above. Other related findings have been produced by

computer scientists, including Baum et al. (1995) and Muhlenbein

and Schlierkamp-Vosen (1993). A more closely related study by

Watkins (2002) provides substantial insights into the limits of

genomic–information content when mutations are common.

The Model
Let us now examine a simple model that was inspired by the mod-

els previously investigated by Eigen and Schuster (Eigen 1971;

Eigen and Schuster 1979). Consider an organism with a genome

that consists of a linear polymer consisting of L monomers. For

now, we will assume that there are four different monomer types,

as in contemporary organisms. To begin, we follow Eigen and

Schuster, and assume that the organism is asexual (Eigen 1971;

Eigen and Schuster 1979). We also assume that the population

size is very large (effectively infinite, so there are no stochastic

effects associated with random genetic drift) and the population

size does not change over time. Thus, every individual that “dies”

is replaced by the birth of a new organism. (Here “death” includes

any mechanism that removes organisms from the reproductive

pool, such as denaturing or emigration.)

There are a total 4L different possible monomer sequences

(genomes) that we label 1, 2, . . . 4L. Let di represent the death

rate for individuals with the ith sequence. Thus, in a very small

time interval, �t, the probability that an individual with genome

sequence i will die is di × �t. We assume that when a new

individual is born, each member of the population is equally likely

to be the parent. The new individual has the same genome as its

parent, apart from any new mutations it carries. We assume that

mutations are independent of one another, and that they occur

during the birth process with a probability of μ per monomer.

Each mutation has an equal probability of converting the parental

monomer to one of the other three monomer types.

To study a population that incorporates sex and recombina-

tion, we use exactly the model just specified, except we make

the additional assumption that, when a population has come to

equilibrium, there is statistical independence of the monomers

present at different sites within the genomes of newborn individu-

als. Thus, when sex and recombination are occurring, we assume

that among newborns, the probability of a particular monomer

being present, at a particular site within the genome, in a partic-

ular individual, is independent of the individual’s genotype at all

other sites. Technically, this condition can only be guaranteed if

each monomer incorporated into an offspring is derived from a

different, randomly selected, parent. However, experience in pop-

ulation genetics shows that modest amounts of recombination are

typically sufficient to ensure a high level of statistical indepen-

dence between loci, so long as the population size is large, mating

is random, and a large number of sites within the genome are sub-

ject to selection (Bulmer 1989; Turelli and Barton 1990; Lynch

and Walsh 1998). Whether or not near-statistical independence

is a reasonable assumption for a given real population depends

on the frequency of recombination events, and on other details

that are highly uncertain. We limit attention to the two extremes,

ranging from asexuality to complete statistical independence, as

a way of measuring the full potential impact of recombination,

and to facilitate the calculations.

For the asexual mode of reproduction, we assume that, at

equilibrium, the monomer frequencies are the same at all sites

within the genome. We make the same assumption for the sexual

mode of reproduction. These assumptions are in accord with our

experience with numerical studies involving small genomes (low

values for L) where we initialized trials using randomly selected

frequencies of the various possible genotypes (i.e., generally start-

ing with unequal monomer frequencies at different sites within the

genomes). For the main runs, which used larger genomes, we ini-

tialized the population with all individuals having a mutation-free

genotype.

Our experience in working with the above model indicates

that the set of genotypes in the population tends to approach a

unique equilibrium distribution. The biological-information con-

tent of a typical genome, once this equilibrium distribution is

achieved, is our central focus. This issue is easiest to address in

the context of a simple scheme for assigning the values of the

death rates (the di) to genotypes. We now specify this scheme.

SCHEME FOR ASSIGNING DEATH RATES

The phenotypes of our hypothetical organism are classified as

falling into � different categories, as suggested above. The
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categorization is on the basis of all of the phenotypic charac-

teristics that are important for natural selection (i.e., for the deter-

mination of the death rates—the di). In general, the categorization

could be on the basis of multiple phenotypic characteristics, and

hence the value of � can be extremely large (Waxman and Welch

2005).

Let us assume that, in a particular environment, only one of

the � different possible phenotypes will allow survival. We will

call this phenotype the “high-fitness phenotype.” (Our investiga-

tions have shown that this assumption is not a crucial determinant

of the qualitative nature of the results. However, it does simplify

matters). We measure time in units where individuals with the

high-fitness phenotype have a death rate of unity (di = 1); all

other phenotypes have an infinite death rate (di = ∞). It follows

that only genomes that produce the high-fitness phenotype will be

found in the population. This means that the genome of any indi-

vidual present in the population encodes log2(�) bits of biological

information.

For simplicity, let us assume that each possible phenotypic

category (of which there are a total of �) is generated by a unique

set of 4L/� different genomes (thus, 4L/� must be an integer).

Additionally, we assume that all genomes that produce the high-

fitness phenotype have a similar sequence. In particular, we as-

sume that a particular “ideal” genome can be identified, and this

genome produces the high-fitness phenotype. We assume further

that the high-fitness phenotypes is also produced by all genomes

that have a sequence with, at most, θL differences from the se-

quence of the ideal genome (where 0 ≤ θ ≤ 1). For example, say

that θ = 0.4 and L = 10,000. Under these conditions, our assump-

tions imply that the high-fitness phenotype in question will be

produced by any genome that differs from the ideal genotype at

4000 locations within the genome, or fewer.

Results
Consideration of the model suggests that there is no upper limit

to the amount of biological information than can be maintained

in a population, as long as the genome is sufficiently large. For

example, if each phenotypic category is produced by only a sin-

gle genomic sequence (θ = 0) then the number of phenotypic

categories equals the number of different genotypes, that is, � =
4L and so log2(4L) = 2L bits of biological information can be

maintained in an organism. The amount of biological information

that can be maintained is smaller with larger values of θ, but the

amount of maintainable information always increases with L for

any value of θ. This observation, however, does not lead to a re-

alistic solution to Eigen’s Paradox unless we can show that the

information can be maintained without imposing a high “genetic

load” on the population. In the current context, this means estab-

lishing that the average number of offspring produced by adults

is not unreasonably large. (Here, an “adult” is an individual that

possesses the high-fitness phenotype, and thus survives the birth

process.) With these considerations in mind, we focus on the birth

rate of adults; this is a quantity that, in a population whose number

is regulated at equilibrium, has a value determined by parameters

of the model, and by the mode of reproduction.

We will use B to denote the equilibrium birth rate. We mea-

sure B in the time units adopted above, where the mean lifetime

of individuals with the high-fitness phenotype is unity. Thus, if

an equilibrium population contains N adults, then, during a pe-

riod of time equal to an average adult lifetime (i.e., during one

time unit) approximately NB offspring will be born. We numer-

ically determine the equilibrium birth rate from the equilibrium

distribution describing a population. This is arrived at from con-

sideration of the long-term dynamics of a population, and the

condition for equilibrium leads to an equation that can be nu-

merically iterated to determine the equilibrium distribution (see

Appendix 1).

Figure 1 shows the value of the equilibrium birth rate, B,

for various values of the parameter θ, when the per-monomer

mutation rate is μ = 0.01. The figure also shows the amount of

biological information present in the genomes of these adults,

namely log2(�) bits. A much more comprehensive set of results

is given in Table 1.

We note that to calculate � (and thus information content)

we use θ and L to calculate the proportion of all possible genomes

that produce the high-fitness genotype, and thus allow survival.

The reciprocal of this proportion is equal to � (see Appendix 1).

The results reveal that for the stable encoding of a given

number of bits of biological information, the equilibrium birth

rate, under sexual reproduction, is lower than that required under

asexual reproduction (and often much lower). The only exception

to this occurs when there is no genetic redundancy, so every

possible genome leads to a different phenotype, and all alterations

to the ideal genetic sequence are fatal (i.e., when, θ = 0 so � =
4L). In this case, the equilibrium birth rate required for survival

of an asexual population is identical to that required by a sexual

population.

Discussion
Is the amount of information that can be stably encoded in a

pre-enzymatic world sufficient to produce the sort of complex

phenotypes that could reduce error rates, thereby allowing more

complex phenotypes, and yet lower error rates, etc? To address

this question, it is useful to note that even if every offspring

born produces the high-fitness phenotype, the equilibrium birth

rate can never fall below B = 1, given the assumption of an

unchanging population size. Therefore, a birth rate that is no
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Figure 1. Equilibrium birth rates as a function of θ when μ = 0.01 (where μ is the rate of mutation per monomer). The three panels are

for three different values of the number of monomers in the genome, L. The ordinates give the equilibrium birth rate (i.e., the mean

number of offspring produced per adult) for different parameter values. The diamonds indicate results for asexual reproduction, whereas

filled circles indicate results for sexual reproduction. The rows of numbers just beneath the abscissas give values of θ, which denotes the

proportion of monomers that must be identical to those in the “ideal” genome if the organism is to survive. The lower row of numbers

gives the information values in bits (binary digits).

more than 20 times this absolute minimum value does not seem

implausibly high (i.e., B ≤ 20). Indeed, much higher birth rates

are not out of the question. In the absence of error-correcting

enzymes, mutation rates might have been as low as μ = 0.01

(Eigen 1971; Maynard Smith and Szathmary 1995). With these

considerations in mind, it is of interest to note (from Fig. 1 and

Table 1) that with a mutation rate of μ = 0.01 and a birth rate

below 12, it is possible to encode 9617 bits of information when

reproduction is sexual and the genome length is L = 10,000. This

is much more information than would be expected using Eigen and

Schuster’s calculations (Eigen 1971; Eigen and Schuster 1979),

which lead to the expectation that not much more than 2/μ = 200

bits of biological information can be maintained when μ = 0.01

and birth rates are not extremely large. Thus, Eigen’s Paradox

appears to be much less paradoxical.

To understand this finding in more concrete terms, it may

help to recognize that if the phenotype being specified by the

genome is a protein sequence constructed from 20 amino acids

then 9617 bits is sufficient to provide an exact specification of

a protein sequence that is 2225 amino acids in length (9617 ≈
log2(202225)). If the phenotype consists of a ribozyme constructed

from four nucleotides, then 9617 bits can specify a sequence of

4808 nucleotides (9, 617 ≈ log2(44808)).

Do our findings represent a key step in solving Eigen’s Para-

dox? This depends (in part) on the minimum required complexity

of an effective error-reducing agent (e.g., an error-reducing en-

zyme or ribozyme). Relevant data are not yet at a stage when a

definitive statement on this matter can be made. However, data

that bear directly on this issue, come from the laboratory produc-

tion of a ribozyme that replicates short RNA sequences with an

error rate of μ ≈ 0.033. This ribozyme is only 189 nucleotides

in length, and thus requires log2(4189) = 378 bits of information

to specify the complete sequence. The ribozyme was developed

in the course of a relatively short experiment (Johnston et al.

2001). Thus, it would not be surprising if a much less-mutagenic

ribozyme could be specified with no more data, and perhaps even

less. However, even if the ribozyme would have to be twice as

long to be much less mutagenic, the required amount of informa-

tion (2 × 378 = 756 bits) can be stably maintained for a mutation

rate that is as high as μ = 0.04 (see Table 1 for a sexual population

with L = 10,000 and θ = 0.6). Furthermore, this can be accom-

plished without requiring a high birth rate. These observations,

although not definitive, are at least suggestive that the combined

chemical and mathematical realities do not conspire to make life

impossible.

As noted above, our model incorporates truncation selection,

which is, essentially, a form of synergistic epistasis (Kimura and

Maruyama 1966; Kondrashov 1988; Peck and Waxman 2000).

Synergistic epistasis means that deleterious mutations tend to

be more damaging in genomes that are already contaminated

with many deleterious mutations, as compared to their effects in

less-contaminated genomes. Although the use of truncation selec-

tion helps to simplify and clarify our presentation, it is certainly

not necessary to generate results that are qualitatively similar to

ours. Nevertheless, it is important to recognize that, for selection

schemes that do not incorporate synergistic epistasis, results that

are very different from ours are likely to emerge. In particular, it

is straightforward to find cases in which, in contrast to our results,

recombination between genomes increases the birth rate required

to sustain the population at equilibrium.
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Table 1. The per-monomer mutation rates (μ) and mode of reproduction (asexual or sexual) are specified in the left-most column, and

the data to the right of these specifications give the mean number of offspring for adult members of a population at equilibrium under

the given parameter values. The question marks denote data points too large to calculate using our methods. The quantity L gives the

number of monomers in the genome, and θ denotes the proportion of monomers that must be identical to those in the “ideal” genome

if the organism is to survive.

θ 0 0.1 0.2 0.3 0.4 0.5 0.6

L=100
Info. (bits) 200.00 140.00 99.00 68.00 43.00 24.00 11.00
μ=0.01, asexual 2.73 1.94 1.61 1.39 1.25 1.14 1.07
μ=0.01, sexual 2.73 1.22 1.12 1.08 1.06 1.04 1.03
μ=0.02, asexual 7.54 3.77 2.59 1.95 1.56 1.31 1.15
μ=0.02, sexual 7.54 1.58 1.31 1.20 1.14 1.09 1.06
μ=0.04, asexual 59.28 14.58 6.78 3.82 2.44 1.71 1.31
μ=0.04, sexual 59.28 3.06 1.91 1.54 1.35 1.23 1.14
μ=0.08, asexual 4.18×103 235.43 49.11 15.21 6.06 2.95 1.72
μ=0.08, sexual 4.18×103 17.6 5.31 2.98 2.08 1.62 1.34

L=1,000
Info. (bits) 2,000.00 1,377.00 966.00 648.00 400.00 212.00 82.00
μ=0.01, asexual 2.32×104 439.23 68.88 17.58 6.11 2.72 1.52
μ=0.01, sexual 2.32×104 2.33 1.58 1.34 1.22 1.14 1.08
μ=0.02, asexual 5.94×108 2.05×105 4.94×103 316.87 37.81 7.43 2.32
μ=0.02, sexual 5.94×108 10.29 3.36 2.13 1.63 1.37 1.19
μ=0.04, asexual 5.36×1017 5.56×1010 2.94×107 1.13×105 1.53×103 57.00 5.44
μ=0.04, sexual 5.36×1017 999.27 33.40 8.25 3.75 2.23 1.53
μ=0.08, asexual 1.63×1036 1.05×1022 1.98×1015 2.19×1010 3.22×106 3.80×103 31.03
μ=0.08, sexual 1.63×1036 1.90×109 6.33×104 671.13 50.66 9.58 3.05

L=10,000
Info. (bits) 20,000.00 13,731.00 9,617.00 6,439.00 3,957.00 2,082.00 787.00
μ=0.01, asexual 4.45×1043 6.70×1025 6.98×1017 9.37×1011 2.77×107 9.98×103 37.26
μ=0.01, sexual 4.45×1043 164.27 11.66 4.30 2.49 1.73 1.33
μ=0.02, asexual 5.49×1087 9.40×1051 8.06×1035 1.22×1024 9.36×1014 1.10×108 1.43×103

μ=0.02, sexual 5.49×1087 2.19×107 2.50×103 85.19 14.12 4.56 2.10
μ=0.04, asexual 1.94×10177 1.95×10105 5.39×1072 6.02×1048 2.04×1030 1.86×1016 2.39×106

μ=0.04, sexual 1.94×10177 2.02×1025 5.91×1011 3.27×106 5.34×103 105.85 8.24
μ=0.08, asexual ? 2.05×10216 2.50×10149 1.47×10100 1.62×1062 2.32×1033 1.13×1013

μ=0.08, sexual ? 8.05×1085 2.23×1042 4.03×1023 1.94×1013 8.73×106 812.63

Is it likely that synergistic epistasis was a common mode of

selection among the early ancestors of life on Earth? Although

a comprehensive discussion of this question is beyond the scope

of the current work, it is worth noting that both computer sim-

ulations and experimental data suggest that synergistic epistasis

tends to arise when genomic mutation rates are relatively high,

as they presumably were during the early stages of the develop-

ment of complex life (Wilke 2001; Wilke et al. 2001; Proulx and

Phillips 2005; Codoner et al. 2006; Sanjuan et al. 2007; Sardanyes

et al. 2008). This makes sense, as redundancy in the production

of phenotypes is likely to be important when genomic mutation

rates are high, as redundancy means that damage to one region

of the genome can be ameliorated by other, undamaged regions.

This sort of redundancy tends to generate synergistic epistasis

(Kondrashov 1988; Sanjuan and Elena 2006). In addition, theo-

retical work suggests that synergistic epistasis tends to arise easily

when selection depends on competitions between small numbers

of individuals (Hamilton and Tanese 1990; Peck and Waxman

2000). Early organisms might have competed, for example, for

attachment sites in which they could anchor to a substrate, or for

monomers from which to produce the next generation. Finally, it

may be that the development of complex life simply had to wait

until the appearance of a selection regime that was sufficiently

synergistic. Such an appearance does not seem unlikely, given

that an appropriate selection regime need only have been present

within a limited area, and only for a period of time sufficient for

the development of efficient mechanisms for the reduction of the

mutation rate.
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In the calculations presented here, we have assumed that

the number of possible monomers is four—as in contemporary

organisms. However, this need not have been the case early in the

history of life. The maximum amount of information that can be

encoded by a genetic sequence of a given length increases with

the number of monomers. This maximum is achieved when θ = 0,

so any difference from the “ideal” genetic sequence is fatal, and

every genome codes for a different phenotype. In this case �= mL,

where m is the number of monomers in use. Thus, the maximum

amount of information achievable (expressed in bits) is given

by log2(mL) = L log2(m). This expression shows that, although

more information can be encoded by using more monomers, the

increase is only logarithmic in the number of monomers, m, and

hence quite insensitive to this number.

Our results are, of course, dependent on the details of the

model that we chose. Our calculations should, therefore, be re-

garded as an “existence proof.” That is, they show that when

recombination occurs, simple coding and selection schemes ex-

ist that allow for much more information to be encoded into

genomes than was believed possible by the framers of Eigen’s

Paradox (Eigen 1971; Eigen and Schuster 1979; Maynard Smith

and Szathmary 1995). We hope that this observation will lead

to new and productive avenues of research among origin-of-life

researchers, and perhaps among researchers concerned with con-

temporary organisms as well.
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Maynard Smith, J., and E. Szathmáry. 1995. The major transitions in evolution.
W. H. Freeman Spektrum, Oxford.

Meyerhans, A., J. P. Vartanian, and S. Wain-Hobson. 1990. DNA recombina-
tion during PCR. Nucleic Acids Res. 18:1687–1691.

Muhlenbein, H., and D. Schlierkamp-Vosen. 1993. Predictive models for the
breeder genetic algorithm: 1. Continuous parameter optimisation. Evol.
Comput. 1:25–50.

Peck, J. R., and D. Waxman. 2000. Mutation and sex in a competitive world.
Nature 406:399–404.

Proulx, S. R., and P. C. Phillips. 2005. The opportunity for canalization and
the evolution of genetic networks. Am. Nat. 165:147–162.

Sanjuan, R., J. M. Cuevas, V. Furio, and E. C. Holmes. 2007. Selection for
robustness in mutagenized RNA viruses. PLOS Genet. 3:939–946.

Sanjuan, R., and S. F. Elena. 2006. Epistasis correlates to genomic complexity.
Proc. Natl. Acad. Sci. USA 103:14402–154405.

Santos, M., E. Zintzaras, and E. Szathmáry. 2003. Origin of sex revisited.
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Appendix 1
In this Appendix, we give (1) the formulation and mathematical

analysis leading to the results we use for an asexually reproducing

population of polymers, (2) the corresponding formulation and

analysis for a sexual population, and (3) the way information is

calculated for this work.

(1) Asexual reproduction
Consider polymers consisting of L monomers that are located

at L contiguous sites. We assume there are m different types of

monomer. We will refer to the polymers as “individuals.” Each

individual is characterized by a vector α = (α1, α2, . . . , αL) where

each αi can take only two values: 0 and 1. When αi = 0 the optimal

monomer is present at site i, whereas, when αi = 1, one of the

other m − 1 suboptimal monomers is present at site i. We will

refer to α = (α1, α2, . . . , αL) as the “genotype” of an individual.

The number of suboptimal monomers (also termed mutations)

associated with genotype α, which we write as n(α), is given by

n(α) =
L∑

i=1

αi . (A1)

The dynamics in continuous time of an effectively infinite

population of polymers is given in terms of a probability distri-

bution, ϕ (α, t). This is the proportion of the population that has

genotype α at time t. To determine the dynamical behavior of

a population of polymers, we consider the events that occur in

an infinitesimal time interval, namely death of some individuals

and the asexual production of offspring by other individuals. This

leads to the equation

dϕ(α, t)

dt
= −D(n(α))ϕ(α, t) + B(t) χA(α, t)

− ϕ(α, t)[−D̄(t) + B(t)], (A2)

where (1) D(n(α)) is the death rate of individuals with genotype α;

it is assumed to be solely a function of the number of suboptimal

monomers (mutations), n(α), associated with genotype α. (2) B(t)

is the birth rate (rate of production) of “offspring” polymers at time

t. The birth rate of an individual is assumed to be independent of

their genotype. (3) D̄(t) is the mean death rate of the population at

time t and is given by D̄(t) = ∑
α D (n(α)) ϕ(α, t) where here and

elsewhere we use the notation
∑

α = ∑1
α1=0

∑1
α2=0 . . .

∑1
αL =0.

(4) χA(α, t) is the probability distribution of newly born individ-

uals. It has the form χA(α, t) = ∑
β Mα1β1 Mα2β2 . . . MαL βL ϕ(β, t)

where Mαβ is the probability that a parental site with monomer of

type β (=0 or 1) will, on reproduction, produce an offspring with

monomer of type α (=0 or 1) at that site. We have

M00 = 1 − μ, M01 = ν, M10 = μ, M11 = 1 − ν, (A3)

where μ(ν) is the probability that an optimal (suboptimal)

monomer will be reproduced as a suboptimal (optimal) monomer.

We take ν = μ/(m − 1), assuming that mutation rates are identi-

cal between different monomers, so given a suboptimal monomer

undergoes mutation, it has a probability of 1/(m − 1) of producing

an optimal monomer.

We work under the assumption that population number is

regulated, so the number of polymers present in the population

is very large but has a fixed value. As a consequence, the birth

rate must equal the mean death rate at all times: B(t) = D̄(t), in

which case equation (A2) reduces to

dϕ(α, t)

dt
= −D (n(α)) ϕ(α, t) + D̄(t)χA(α, t). (A4)

SYMMETRIC SOLUTIONS

We restrict all considerations to a class of distributions we refer

to as “symmetric.” Such distributions have the property that all

genotypes with k mutations are present in equal proportions in the

population. For example, when there are L = 3 sites, the genotypes

with k = 1 mutations, namely (1, 0, 0), (0, 1, 0), and (0, 0, 1)

are all present in equal proportions in the population. Numerical

solution of equation (A4) suggests that a symmetric distribution

always arises at long times. There is a computational advantage to

considering symmetric distributions. Instead of having to consider

2L different genotypes, as we would in a general distribution, a

symmetric distribution, involves only L + 1 different classes of

the number of mutations.

To define a symmetric distribution, let ψ(k, t) be the pro-

portion of the population with k mutations at time t. With δa,b a

Kronecker delta (δa,b has the value 1 when a = b and vanishes

otherwise) we can write ψ(k, t) = ∑
α δn(α),kϕ(α, t) for k = 0,

1, 2, . . . , L. With
(L

k

) = L!
(L−k)!k! a binomial coefficient, there are∑

α δn(α),k = (L
k

)
different genotypes with k mutations. In gen-

eral, all
(L

k

)
of these different genotypes will be present in the

population in different proportions. A symmetric distribution cor-

responds to all of these genotypes each being present in the pro-

portion ψ(k, t)/
(L

k

)
. In general, a symmetric distribution is defined

by

ϕ(α, t) = ψ(n(α), t)(
L

n(α)

) . (A5)
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For such a distribution, all relevant information about the popu-

lation is contained in the distribution of mutation numbers,

ψ(k, t). Emphasis can thus be shifted from ϕ(α, t) to ψ(k, t).

The dynamical equation obeyed by ψ(k, t) follows from equation

(A4) by multiplying this equation by δn(α),k and summing over all

α. This leads to

dψ(k, t)

dt
= −D(k)ψ(k, t) + D̄(t)

L∑
j=0

Q(k, j)ψ( j, t), (A6)

where D̄(t) = ∑L
k=0 D(k)ψ(k, t) and

Q(k, j) =
min(k, j)∑

x=max(0,k+ j−L)

(
L − j

k − x

)(
j

x

)
(1 − ν)xν j−xμk−x (1 − μ)L−k− j+x .

(A7)

EFFECTS OF TRUNCATION SELECTION

AT EQUILIBRIUM

In this work, we will consider only equilibrium properties of a

population. The proportion of the population with k mutations

at equilibrium is denoted ψ(k). It follows from solving a time-

independent analogue of equation (A6), namely

−D(k)ψ(k) + D̄
L∑

j=0

Q(k, j)ψ( j) = 0, (A8)

where D̄ is the equilibrium mean death rate. We consider death

rates given by

D(k) =

⎧⎪⎨
⎪⎩

D0, k ≤ n∗

D1, k > n∗,
(A9)

where n∗ is a positive integer and the parameter D1 is larger than

D0. In the limit D1 −→ ∞, we have truncation selection where

having more than n∗ mutations is lethal.

There is a subtlety about calculating the equilibrium mean

death rate, D̄, in the limit D1 → ∞, because the fraction of the

population with more than n∗ mutations is numerically found to be

proportional to 1/D1. As a consequence, although this fraction of

the population, namely
∑

k>n∗ ψ(k), becomes vanishingly small

when D1 → ∞, it generally will make a finite contribution to D̄.

This arises because D̄ contains the contribution D1
∑

k>n∗ ψ(k).

A robust way to calculate D̄ is to note equation (A8) can be written

as

ψ(k) = D̄ [D(k)]−1
L∑

j=0

Q(k, j)ψ( j). (A10)

Summing this equation over all k and using
∑L

k=0 ψ(k) = 1 yields

D̄ =
⎡
⎣ L∑

k=0

[D(k)]−1
L∑

j=0

Q(k, j)ψ( j)

⎤
⎦

−1

. (A11)

In this form, we can harmlessly take D1 → ∞ because∑L
j=0 Q(k, j)ψ( j) is bounded (<1). The equilibrium mean death

rate, D̄, equals the equilibrium birth rate of the population, B,

because population number was assumed to be unchanging.

We note that at all sites we have included mutations both

from and to the optimal monomer. If we neglect mutations from

suboptimal monomers to optimal monomers (i.e., neglect “back

mutations”), by setting ν = 0 in equation (A3) then we have

Q(k, j) = (L− j
k− j

)
(1 − μ)L−kμk− j . In this case, setting k = 0 in

equation (A10) and assuming ψ(0) 	= 0 yields the standard

result D̄ = (1 − μ)−L D(0) 
 eμL D(0). Including “back muta-

tions” leads to a different expression for D̄.

ITERATIVE APPROACH TO AN EQUILIBRIUM

SOLUTION

Using equation (A11) to eliminate D̄ from equation (A10) yields

ψ(k) = [D(k)]−1 ∑L
j=0 Q(k, j)ψ( j)∑L

g, j=0 [D(g)]−1 Q(g, j)ψ( j)
. (A12)

This suggests that iterating this equation is a possible procedure

to determine ψ(k). That is, given a form for ψ(k), we calculate

the right-hand side of the equation, to produce an updated form

for ψ(k). We repeat this procedure to convergence. This has been

found to work in practice for truncation selection when the initial

form for ψ(k) corresponds to a mutation-free population: ψ(k) =
δk,0. Once the converged form for ψ(k) has been determined, the

equilibrium mean death rate, D̄, may be found using the converged

ψ(k) in equation (A11).

When 0 < μ < 1, all of the elements of the matrix Q(k,

j) are positive. It follows that with “near truncation selection”

(D1 large but <∞), the matrix appearing in the iteration scheme

described above, namely Rk, j = [D(k)]−1 Q(k, j), has positive

elements, and the iteration is guaranteed to converge, by the Perron

Frobenius theorem (Strang 1988).

(2) Sexual population
We will consider the equilibrium properties of a sexual popula-

tion, under the assumption that offspring consist of L monomers

derived from L randomly picked individuals. The analogue of

equation (A4), for a sexual population, is

dϕ(α, t)

dt
= −D (n(α)) ϕ(α, t) + D̄(t)χS(α, t). (A13)

Here χS(α, t) is the probability distribution of newly born indi-

viduals. It has the form
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χS(α, t) =
1∑

β1=0

Mα1β1ϕ1(β1, t)

×
1∑

β2=0

Mα2β2ϕ2(β2, t) . . .

1∑
βL =0

MαL βL ϕL (βL , t),

(A14)

where the Mαβ are given in equation (A3) and ϕi(β, t) is

the marginal distribution of monomers of site i: ϕi (βi , t) =∑
γ δβi ,γi ϕ(γ, t).

Numerical solution of equation (A13) suggests that, at long

times, ϕ(α, t) settles down to a solution where the marginal distri-

butions associated with each site (the ϕi(βi, t)) become identical.

That is, at large t,

ϕ1(β, t) = ϕ2(β, t) . . . = ϕL (β, t). (A15)

Because we are interested in long time (equilibrium) properties

of a population, we will incorporate equality of the marginal

distributions directly into the problem.

The distribution of mutations in the population at time t,

written ψ(k, t), is defined by ψ(k, t) = ∑
α δn(α),kϕ(α, t). The

dynamical equation for ψ(k, t) follows by multiplying equation

(A13) by δn(α),k and summing over all α. Using equation (A15) we

obtain

dψ(k, t)

dt
= −D(k)ψ(k, t) + D̄(t)

(
L

k

)
[1 − A(t)]k [A(t)]L−k ,

(A16)

where A(t) = (1 − μ) [1 − p(t)] + νp(t) and p(t) = L−1∑L
k=0 kψ(k, t).

We adopt a similar procedure to that used in the asexual case

to determine the equilibrium solution, by rewriting the equilibrium

form of equation (A16) as

ψ(k) =
[D(k)]−1

(
L

k

)
(1 − A)k AL−k

L∑
j=0

[D( j)]−1

(
L

j

)
(1 − A) j AL− j

(A17)

and iterating this equation to convergence. At convergence, equa-

tion (A16) implies that the equilibrium mean death rate de-

pends on ψ(k) only via its dependence on A, and is given by

D̄ = [
∑L

k=0[D(k)]−1
(L

k

)
(1 − A)k AL−k]−1.

(3) Information content
In the final part of this Appendix, we give details leading to the

determination of the information content when: (a) polymers have

L sites, with m monomers at each site, (b) the “ideal sequence”

has specific monomers at each site, (c) all sequences found in a

population have ≤n∗ differences from the ideal sequence.

To determine the information content, we note that the total

number of possible sequences is mL and that the number of se-

quences with k differences from the ideal sequence is (m − 1)k
(L

k

)
.

It then follows that the proportion of all sequences with ≤n∗ dif-

ferences from the ideal sequence (defined in the main text as �−1),

is given by

�−1 =

n∗∑
k=0

(m − 1)k
(L

k

)

mL
. (A18)

The information content (in bits) of a polymer with n∗ or fewer

differences from the ideal sequence is denoted I and given by

I = − log2(�−1) = log2 �. (A19)

Note that if n∗ = 0 then � = mL and I = L log2 m.
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