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Abstract. – The distribution of bursting lengths of neuron spikes, in a two-component
integrate-and-fire model, is investigated. The stochastic process underlying this model corre-
sponds to a generalisation of the Brownian motion underlying Levy’s arcsine law of residence
times. The generalisation involves the inclusion of a quadratic potential of strength γ and
γ = 0 corresponds to Levy’s original problem. In the generalised problem, the distribution of
the residence times, T , over a time window t, is related to spectral properties of a complex,
non-relativistic Hamiltonian of quantum mechanics. The distribution of T depends on γt and
varies from a U-shaped distribution for small γt to a bell-shaped distribution for large γt. The
first two moments of T of the generalised problem are explicitly calculated and the crossover
point between the two forms of the distribution is calculated. The distribution of residence
times is shown to be independent of the magnitude of the stochastic force. This corresponds,
in the neuron model, to exactly balanced synaptic inputs and, in this case, the distribution of
residence times contains no information on synaptic inputs.

Introduction. – After over a century of neurophysiological research [1], we still do not
understand the principles by which a stimulus such as an odour, image or sound is repre-
sented within the nervous system by a distributed set of neural states. There is little doubt
that much of the information processing power of the nervous system resides in the activities
of neural spikes (electrical pulses in the temporal domain). While a large numbers of detailed
analyses of completely deterministic or random spikes have been made, such results cannot
address issues of the functional roles of various bursting patterns of neurons that have been
widely observed in experiments [2]. If we can unlock the principles, by which information is
encoded within these various patterns of spikes, we may actually be able to understand how
the nervous system works.
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While substantial progress towards understanding, at a spike level, has been achieved over
the past decades, there is virtually no rigorous result on analysing neuron bursting activity.
The two main difficulties in achieving this have been firstly, the complexity of the model
usually used to generate bursting activity and secondly, the lack of theoretical tools to tackle
the model. In the letter, we aim to overcome some of these difficulties.

We shall derive results following from a generalisation of the stochastic process underlying
Levy’s arcsine law. This law [3] is a non-intuitive result for the distribution of time spent on the
positive x-axis, during a bout of one-dimensional Brownian motion, and is a fundamental result
of probability theory, as pointed out in [4]. To the best of our knowledge, a generalisation, of
the type proposed here, has not been previously considered. Although we confine ourselves
to a neuronal model, we expect that the method employed and results derived will be useful
for the applications in other areas as well.

The neuronal model we consider is a two-compartment integrate-and-fire model which can
naturally generate bursting activity and has been widely studied in the literature [5, 6]. We
shall show that the total bursting-length distribution, within a given time window, is indepen-
dent of synaptic inputs but depends on the time window, when the neuron receives an exactly
balanced inhibitory and excitatory input. The critical value at which the distribution function
changes from a convex function to a concave function is determined from a generalisation of
the stochastic process underlying Levy’s arcsine law.

Calculation. – To emphasise the general applicability of our results, we adopt the lan-
guage of one-dimensional Brownian motion. To proceed, consider the stochastic differential
equation governing the position of a particle that moves in one dimension along the x-axis.
At time t, the particle has coordinate X(t) which obeys

dX(t)/dt = −γX(t) + αξ(t). (1)

Here, γ > 0 and ξ(t) is a Gaussian distributed random function, with an expected value of zero,
E[ξ(t)] = 0, and delta-function correlated covariances, E[ξ(t1)ξ(t2)] = δ(t1 − t2). Without
loss of generality, the parameter α, which is a measure of the magnitude of the random force,
may be taken as positive. We shall consider statistical properties of X(t) when X(0) = 0 in
all realisations of the process. With Θ(•) denoting a Heaviside step function, the quantity

T =
∫ t

0

Θ(X(s))ds (2)

is a random variable in the range [0, t] and corresponds to the time the particle spends in the
region x ≥ 0. The quantity T is often referred to as the residence or occupation time and the
distribution (probability density) of residence times is

φ(τ) = E[δ(τ − T )] (3)

(see, e.g., [7] and references therein). The distribution φ(τ) does, implicitly, depend on the
parameters t and γ. The distribution also, apparently, depends on the parameter α which
characterises the magnitude of the stochastic force; however as long as α �= 0, the distribution
is independent of this parameter [8]. Accordingly, we set α = 1 in what follows.

It is well known that the probability density of particle trajectories (Wiener measure)
is proportional to exp[− ∫ t

0
ds[ẋ(s) + γx(s)]2/2], where ẋ(s) ≡ dx(s)/ds. Using a Fourier
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representation of the delta-function, we have

φ(τ) =
∫ ∞

−∞

dλ
2π

eiλτ

∫ ∞

−∞
dy exp

[ − γy2/2 + γt/2
] ×

×
∫ x(t)=y

x(0)=0

d[x] exp
[
−

∫ t

0

[
ẋ2(s)/2 + γ2x2(s)/2 + iλΘ(x(s))

]
ds

]
. (4)

Here
∫ x(t)=y

x(0)=0
d[x] . . . denotes a functional integral over trajectories that start at position 0, at

time 0, and end at position y, at time t (see, e.g., [9]), and the factor exp[−γy2/2 + γt/2]
originates from an integration by parts and the Ito definition of time-splitting underlying
the functional integral [3]. With the conventional definition of an imaginary time functional
integral [9], it may be verified that φ(τ), as given in eq. (4), is correctly normalised over all τ
to unity:

∫ ∞
−∞ φ(τ)dτ = 1.

Completely equivalent to the functional integral appearing in eq. (4), is an imaginary
time, quantum-mechanical propagator which, in Dirac representation, is 〈y| exp[−Ĥλt]|0〉,
where carets denote operators, p̂ (x̂) is the momentum (coordinate) operator, x̂|y〉 = y|y〉 and

Ĥλ = p̂2/2 + γ2x̂2/2 + iλΘ(x̂). (5)

Thus

φ(τ) =
∫ ∞

−∞

dλ
2π

eiλτ

∫ ∞

−∞
dy exp

[ − γy2/2 + γt/2
]〈y| exp [ − Ĥλt

]|0〉. (6)

For the special case, γ = 0, the propagator in eq. (6) reduces to that of a particle in a
piecewise-constant potential and the Laplace transform of the propagator can be found in
closed form:∫ ∞

0

e−zt〈y| exp [ − Ĥλ(γ = 0)t
]|0〉dt = 2 exp

[ − √
2[z + iλΘ(y)]|y|]√

2(z + iλ) +
√
2z

.

Carrying out the y and λ integrals in eq. (6), for this special case, and inverting the Laplace
transform yields, for t ≥ τ ≥ 0, the original results of Levy: φ(τ) = π−1[τ(t − τ)]−1/2 and∫ τ

0
φ(σ)dσ = 2π−1 arcsine (

√
τ/t).

For the general case at hand, γ �= 0, and despite the fact that the Hamiltonian in eq. (5)
is that of a simple harmonic oscillator plus an additional piecewise-constant potential, there
does not appear to be a simple analytical expression for φ(τ). We proceed, therefore, by
establishing properties of the distribution by computing exact moments of T . As an example,

E[T ] =
∫ ∞

−∞
τφ(τ)dτ = i

∂

∂λ

∫ ∞

−∞
dye−γy2/2+γt/2〈y| exp [ − Ĥλt

]|0〉∣∣∣∣
λ=0

=
∫ ∞

−∞
dy

∫ t

0

dse−γy2/2+γt/2〈y|e−Ĥ0(t−s)Θ(x̂)e−Ĥ0s|0〉, (7)

and to obtain the last expression, we utilised a time-ordered series expansion of the propagator
in powers of λ. Note that

∫ ∞
−∞ dye−γy2/2〈y| is, up to a normalisation, the ground state of Ĥ0,

and has an eigenvalue of γ/2. Thus we can simplify eq. (7) to E[T ] =
∫ ∞
−∞ dy

∫ t

0
dse−γy2/2+γs/2

〈y|Θ(x̂)e−Ĥ0s|0〉 = ∫ ∞
0

dy
∫ t

0
dse−γy2/2+γs/2〈y|e−Ĥ0s|0〉 and a straightforward calculation, us-

ing the exact propagator of a simple harmonic oscillator [9], yields E[T ] = t/2.
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Fig. 1 – Histograms of normalised frequencies are plotted that illustrate the distributions of residence
times, φ(τ) of eq. (3), for a time window of t = 1. The histograms were determined from 2×105 inde-
pendent replicate trajectories of a discretised version of eq. (1), with time splitting 0.01. Each trajec-
tory was subject to X(0) = 0 and the parameter α had the value α = 1. When γ = 0 (a), the original
result of Levy (corresponding to the so-called arcsine law) is obtained. The value of γ of (b), corre-
sponding to the variance of residence times having the value of a uniform distribution, Var(T ) = t2/12,
was numerically determined, from eq. (8), to be γ = 2.225. When γ is appreciably larger than this
value, as in (c), the distribution has the opposite convexity to that of the distribution of (a).

An analogous calculation for E[T 2] yields

E
[
T 2

]
= 2

∫ ∞

−∞
dye−γy2/2+γt/2 ×

×
∫ t

0

ds1

∫ s1

0

ds2〈y|e−Ĥ0(t−s1)Θ(x̂)e−Ĥ0(s1−s2)Θ(x̂)e−Ĥ0s2 |0〉.

From this we can calculate the variance of T , Var(T ) = E[T 2]− (E[T ])2, with the result

Var(T ) = t2 × g(γt), (8)

where

g(ζ) =
1
π

∫ 1

0

ds1

∫ s1

0

ds2 arctan

(
e−ζs1/2

√
sinh(ζs2)

sinh(ζ[s1 − s2])

)
. (9)
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We find g(0) = 1/8, g(ζ) ∼
ζ→∞

1/(πζ), which are suggestive of φ(τ) being bimodal (U-shaped)

for small γt and unimodal (bell-shaped) for large γt, in agreement with what is observed
numerically (see fig. 1a and c).

There is a crossover between the bimodal and unimodal forms of φ(τ) (or, equivalently, in
the convexity of φ(τ)) and the value of γt at the crossover point corresponds to φ(τ) being
close to a uniform distribution (see fig. 1b). Given that a uniform distribution on [0, t] has
a variance of t2/12, we can determine the crossover point in behaviour, as that value of γt
where Var(T ) = t2/12. From eq. (9), we numerically find that g(ζ) = 1/12 when ζ � 2.225,
thus the crossover value of γt is γt � 2.225.

Application of calculation. – Let us return to the two-compartment neuron model dis-
cussed above, and now apply the results derived. We note that in this model, a neuron is
composed of two compartments: a somatic compartment and dendritic compartment. Sup-
pose that a neuron receives EPSPs (excitatory postsynaptic potentials) at a number, qE, of
excitatory synapses and IPSPs (inhibitory postsynaptic potentials) at qI inhibitory synapses
and that Vs(t) and Vd(t) are the membrane potential of the soma and dendritic compartments
at time t, respectively.

When the somatic membrane potential, Vs(t), is between the resting potential, Vrest, and
the threshold voltage, Vthre, we have, in the language of stochastic calculus typically employed
in the neuroscience literature,

dVs(t) = −γ(Vs(t)− Vrest)dt+ gc
Vd(t)− Vs(t)

p
dt,

dVd(t) = −γ(Vd(t)− Vrest)dt+ gc
Vs(t)− Vd(t)

1− p
dt+

disyn(t)
1− p

. (10)

Here γ is the decay rate and p is the ratio between the membrane area of the somatic com-
partment and the whole cell. The quantity gc > 0 is a constant, and the synaptic input is
isyn(t) = a

∑qE
i=1 dEi(t)− b

∑qI
j=1 dIj(t), where Ei(t), Ii(t) are Poisson processes with rates λE

and λI, respectively, and a, b are the magnitudes of each EPSP and IPSP. After Vs(t) crosses
Vthre from below, a spike is generated and Vs(t) is reset to Vrest. This is the essence of the
two-compartment, integrate-and-fire model. The interspike interval of efferent spikes is the
smallest value of t, where Vs(t) equals or is larger than Vthre: S(p) = inf{t : Vs(t) ≥ Vthre} for
1 > p > 0. A neuron shows bursting activity if S(p) can be divided into two disjoint groups
A and B, with all interspike intervals in A being much smaller than in B (see, for exam-
ple, [2]). It is well known that Poisson input can be approximated by [10] Isyn(t) = µt+αBt,
where Bt ≡ ∫ t

0
ξ(s)ds is the so-called standard Brownian motion, µ = aqEλE − bqIλI and

α =
√

a2qEλE + b2qIλI. Thus, eq. (10) can be approximated by

dVs(t) = −γ(Vs(t)− Vrest)dt+ gc
Vd(t)− Vs(t)

p
dt,

dVd(t) = −γ(Vd(t)− Vrest)dt+ gc
Vs(t)− Vd(t)

1− p
dt+

dIsyn(t)
1− p

. (11)

It is known that when p is small enough, Vs bursts whenever Vd is above zero [5], where Vd is
given by

dVd(t) = −γ(Vd(t)− Vrest)dt+ dIsyn(t). (12)

In particular, when µ = 0, the model receives exactly balanced synaptic inputs and with the
identification X(t) = Vd(t) − Vrest, eq. (12) coincides with eq. (1). The possible significance
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of an exactly balanced synaptic input has been extensively discussed in the literature [11,12].
Hence we conclude that the total bursting length of the model, within a time window t, is
T , i.e. the residence time of Vd. Given that the typical value of γ is γ = 1/20 [12], we
can conclude that the mean bursting length is t/2, and the variance in bursting lengths is
t2g(γt) (eq. (9)). Hence when t � 2.225× 20, the distribution of T is bell-shaped, but when
t � 2.225× 20, the distribution is U -shaped. We note that many promising hypotheses have
been put forward in the literature on the significance associated with bursting activity for the
information processing power of bursting [2]. However, our results tell us that in the case
of exactly balanced synaptic inputs, i.e. when µ = 0, the complete distribution of T (i.e. all
moments) contain no information of synaptic inputs, i.e. it is independent of α. Hence the
moments of T are not informative and the bursting length in a two-compartment model is not
a candidate of an information carrier, at least under the conditions considered.

It is illuminating to note that the distribution of T relies on t, the observed time window.
Hence from the distribution of T , we can tell the length of the time window in which the
bursting is observed. In particular, at the critical point 2.225/γ, the distribution changes
from a convex function to a concave function.

The coefficient of variation of T defined by
√

Var(T )/E[T ] = 2
√

g(γt) is a decreasing
function of t with a maximum value of 1/

√
2 � 0.7. Hence, the distribution of T is less irregular

than the distribution of interspike intervals of a Poisson process, which has a coefficient of
variation of T of unity.
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