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The local density of states of low energy electronic excitations in a vortex is investigated.
Starting from the Bogoliubov Hamiltonian, we make the approximation of replacing the
quadratic momentum dependence of the free particle kinetic energy by a linear dependence.
We then work with a linearized order parameter profile of the vortex A(r). 4(r)x 4'(0)r,
where r is the distance from the vortex axis. The resulting theory has a simple operator
structure and is exactly diagonalizable. It leads to a sequence of “oscillator-like” excitations
in the core of the vortex. The low energy behaviour is contained in the zeroth oscillator level
and when the excitation energy E and vortex profile obey 4(r)* — E? € rg 4'(0), where ty is
the Fermi velocity, we find that the leading behaviour in the local density of states is of the
form (A(r)*—E?) "2@(A(r)*—E?) with &(x) a Heaviside step function. This “edge”
behaviour is clearly discernible in numerical calculations of the local density of states.  © 1993

Academic Press, Inc.

1. INTRODUCTION

Type Il superconductors have the ability to support topological excitations
known as vortex lines [1]. These are line defects within the superconductor in
which the order parameter falls to zero along a line (the vortex axis) and a
quantized phase of 2nn (n =integer) is aquired when the vortex axis is encircled.

The vortex has a significant influence on the spectrum of the electrons that move
in its presence. It has the ability to both scatter and bind electronic states [2] and
generally causes a significant modification in the local density of electronic states.

The present work is concerned with the local density of states associated with a
single straight vortex in a clean, extreme type Il superconductor. The “classic” work
on the density of states associated with a vortex was carried out by Caroli et al.
[2]. These authors determined the spatial integral of the local density of states—a
global quantity that contains no information on the spatial distribution of the
excitations. This quantity, determined by a careful matching of excitation eigenfunc-
tions, was found to be energy independent in the low energy regime E*< 43,
where F is the energy of the excitations relative to the Fermi energy and 4y is
the bulk equilibrium gap amplitude. Subsequent work by Bardeen et al. [3], using
a WKB approach, determined a number of quantities including the spectrum of
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excitations in the presence of a vortex over a wider range of energies than that
found in Ref [2]. More recent work [4-7], has concentrated on the local density
of states, a quantity which, when convoluted with the derivative of the Fermi-Dirac
distribution, is measurable in conductance experiments using a scanning tunnelling
microscope [8].

In Refs. [5-7] the local density of states was calculated by numerically solving
Eilenberger’s quasiclassical equations for the partially integrated Greens functions
[9] and their results display a rich structure in the local density of states. The
present work has the aim of analytically calculating the local density of states in a
simplified model of the vortex, thereby providing intuition on the numerically
determined behaviour given in Refs. [5-7]. The approach presented is limited to
low energies and leads to an approximation for the local density of states in this
region. A relatively simple functional form for the local density of states is found.

It should be noted that certain aspects of the present work are implicit in the
analytical work of Ref. [4], developed further in the Appendix of Ref. [5], where
the very different language of quasiclassical theory is used to describe the excitation
spectrum.

This paper is arranged as follows. In Section 2 of this work we define the problem
under consideration while in Section 3 we show how to approximate the quadratic
momentum dependence of the free particle kinetic energy by a linear dependence.
In Section 4 an approximate order parameter profile for the vortex is introduced
and the resulting theory is exactly diagonalized. Sections 5 and 6 derive the local
density of states and investigate some of its properties. Section 7 consists of a
discussion and there are five appendices.

We work in units in which #=1, the electronic charge is denoted by —e and a
prime, ', denotes differentiation of a function with respect to its argument.

2. DEFINITION OF THE PROBLEM

Extreme type II superconductors are characterised by having a BCS coherence
length, &y, that is small compared with the London magnetic penetration depth,
AL. In the present work we consider an extreme type II superconductor which
contains an isolated vortex lying along the z axis.

The position of quantities, relative to the vortex, in the x, y plane is given in
terms of cartesian or cylindrical polar coordinates

r=(x, y)=(rcosy, rsiny). (2.1)

For definiteness, we shall use r throughout the paper to denote such a two-
dimensional vector in the x, y plane and likewise, we shall use x to denote the
three-dimensional position vector (x, y, z).

We calculate the low energy, local density of states of the vortex within the
framework of a model mean field Hamiltonian. In terms of the Pauli spin matrices
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(0,,0,,0;) that here act in the space of spin up articles and spin down holes, the
first quantised Bogoliubov Hamiltonian that describes the electronic excitations in
a superconductor can be written as' [1]

H=K(p+eAa;)o,+ V(r). (2.2a)

In this equation K is the kinetic energy measured relative to the Fermi energy
Ex=rmvp2=ki/2m:

K(p)=p>2m — ki /2m. (2.2b)

Furthermore, V(r) is the order parameter describing the vortex and we shall assume
its amplitude, A(r), is real and positive:?

V(ry=A(r) o, exp[ivva,], (2.2c)

with r and  taken from Eq. (2.1).

The vector potential A will be neglected in what follows. It only plays a signifi-
cant role over distances comparable with the London magnetic penetration length
/. and we are interested in low energy properties associated with states bound in
the radial direction from the vortex. These typically vary on a scale no greater than
the BCS coherence length &gs and this is much smaller than 4, for the extreme
type I superconductors under consideration. As a consequence the vector potential
leads to a very small contribution in Eq. (2.2a) [2] (in Ref. [10] the leading correc-
tions arising from the vector potential have been considered). Should we have
recourse to consider effects associated with scattering states, which are not localised
around the vortex, then it would be necessary to keep the vector potential in the
Hamiltonian; we shall briefly discuss this point at a later stage.

Including a factor of two, to account for the contribution of both spin projec-
tions, the local density of states can be written as®

2
p(E;X)=;ImG(x,x;E—i0+)n, (2.3)

! This Hamiltonian omits a paramagnetic contribution following from the interaction of the electronic
spins with the magnetic field of the vortex. In extreme type Il systems this energy is a small quantity.
In superconductors that are not extreme type II in character, Hansen [10] has estimated the effects on
the spectrum from including both the paramagnetic term and the vector potential in the Hamiltonian.

2 The order parameter profile for a vortex, 4(r), vanishes at r =0 and achieves a magnitude equal to
the bulk value of an equilibrium superconductor at large distances from the vortex: Lim, ,, |4(r)] =
Agcs- In the present work we have selected, for convenience, a profile 4(r) that is real and positive. It
is possible to rework our results for a general choice of phase of 4(r) without changing any observable
results which depend on |4{°.

*The Bogoliubov Hamiltonian, Eq. (2.2a), describes the energy of excitations relative to the Fermi
energy, E.. Accordingly, the quantity p(E;x) of Eq.(2.3) describes the local density of states of
excitations having an energy E relative to Ey.
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where Im denotes the imaginary part of a quantity, the subscript 11 denotes the
(1, 1) element in particle hole space (a space spanned by the Pauli matrices), and
G(x,x; E—i0_) is a particular matrix element of the one-particle Greens function

G(x,x"; w)=<{x| ! Ix">; w complex. (2.4)
w—H

In this last equation we have suppressed matrix indices and have employed Dirac

notation, thus the momentum and coordinate operators appearing in Eq. (2.2a) are

to be interpreted as operators obeying [x,, p,]=1id,, and act in the spaces of bra

and ket vectors.

3. LINEARIZATION OF THE KINETIC ENERGY

In Ref. [11] the free energy associated with a vortex in a superconductor was
investigated. In the course of that work the quadratic momentum dependence of the
free particle kinetic energy was approximated by a linear momentum dependence.
This was a rather accurate approximation that simplified the ensuing calculations
and we shall make the same linearization here. There are some differences in the
procedure leading to the approximation in the present work compared with the
procedure used in Ref. [11] and we present, for completeness, the full details of the
linearization here. We shall perform the kinetic energy linearization on G(x, x; w),
since p(E; x) is expressed in terms of this function by virtue of Eq. (2.3).

We begin by noting that for f(p, x) a function of momentum and coordinate
operators appropriate to a particle moving in d spatial dimensions we have the
following result, which is proven in Appendix A,

dk
XL fp ) O = [ G k=i, ) (3.1)

where V acts on quantities to its right. We can use this equation for d=3 and
obtain

1

X )= X Ry o+ ]
1
—J (27:)3 w—[Kk—iV)ya,+ V(r)] (3:2)
We then make the approximations
Kk—iV)xe—ivek-V, with e=k*2m—k%/2m.
a% . mk (33)
f(z 5= N(O)f dcj—-—- with  N(0)=77.
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N(0) 1s the free particle density of states/unit volume for a single spin projection
and dQ, is the solid angle measure about the unit vector k. The above approxima-
tions are based on the assumption that the typical spatial scale of variation of the
order parameter is large compared with k' and that the variation of the free
particle density of states at the Fermi energy may be neglected. From Egs. (3.2)
and (3.3) it follows that

x dgk l
G(x, x; w)~ N0 de | — 2 . 4
(x, X;w) = N( )_[7‘1 Ef 4n o — [(e—ivek-V) o, + V(r)] o

Next we parametrize k by polar and azimuthal angles $ and ¢ and introduce the
triad of orthonormal vectors (Z, é,, é,):

k=cos3Z+sin 3 é, (3.5a)
=(0,0,1)
é,=(cos @, sin ¢, 0) (3.5b)

é,=(—sin @, cos @, 0).

We furthermore introduce coordinates ({, ),

r=_¢é, + né,, (3.6)

and it follows, since there is no = dependence in the order parameter ¥(r), that
k-V=sindé,-V=sin9é.  (2,=d/&). (3.7)

The change of variable from ¢ to k' (a variable which may be positive or negative)

defined by _
e=vpk’sin J. (3.8)

is then made and Egs. (3.4) to (3.8) allow us to write (we neglect the prime on k)

daqQ, . dk 1
Gix, x"“)”z’wFMO)J 4 SJ‘21I w— [opsin Ik —id )04+ V(r)]'
The last step in the linearisation of the kinetic energy is to observe that the A&
integral appearing in Eq. (3.9) is of exactly the form appearing in the right-hand
side of Eq. (3.1) with d= 1, allowing us to use that equation from right to left and
to obtain the {{|---|{)> matrix element of a “one-dimensional”™ Greens function

that depends on the coordinate operator { = ¢, -x and its conjugate momentum®*

(3.9)

pL=é5-p (3.10a)

dQ, . 1
s VIR 2o, —sin 3 {{ ). 3.10b
GOx xi )% 2m MO) [ ot sin g () oo s . (310D)

%1t should be noted that p, =¢, -p is a linear combination of p, and p, . Since 4 and ¢ are independ-
ent of x and v it follows that p, commutes with functions of 9 and ¢.
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We must be bear in mind that, since we use the coordinates ({, #), we must
express V(r) in terms of these. A simple calculation yields

{=rcos(y — o), n=rsin(y — ) (3.11)

A
V(r)=¥m explipa; J({ +iosn). (3.12)

Furthermore, by virtue of Eq. (3.11), both { and # depend on the azimuthal angle
of k, namely ¢, and this appears in the solid angle Q,. Thus after evaluating the
matrix element in Eq. (3.10b) we must set { and # to their values given in Eq. (3.11)
and only then perform the 2, integration.

Purely as a matter of convenience, it is possible to remove the factor exp[ipo,]
appearing in the order parameter of Eq.(3.12) by performing a unitary trans-
formation. We have

vpsin @ pyo,+ V(r)= Ulvpsin $ pya,+ P(r)J U+ (3.13a)
U=exp[ —ipo;/2] (3.13b)

- 4
V(r)=ﬂ(a,c+azn); (3.13c)

thus the Greens function incorporating the linearized kinetic energy and the unitary

transformation, Eq. (3.13b), is
s

G(x, X: w)zznuFN(O)f——i
4n

1
w—[vgsind p,a,+ P(r)]

IC)U*}

xsin@[{U(Cl ]
{=rcosty )

n=rsin(y @)

(3.14)

4. LINEARIZATION OF THE ORDER PARAMETER PROFILE AND DIAGONALIZATION
OF THE RESULTING HAMILTONIAN

The low energy electronic excitations of the system under consideration are states
which are bound radially in the core of the vortex but which are able to translate
freely along the axis of the vortex. The lowest lying of these are expected to have
eigenfunctions which decay to zero, in the radial direction, after a small distance
from the vortex axis. They are therefore sensitive to details of the order parameter
in the vicinity of r=0. As an estimate of the low energy local density of states, we
shall approximate the exact order parameter profile, 4(r), by the lowest non-trivial
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term in its Taylor series expansion about r =0. Since 4(0) vanishes the approxima-
tion amounts to a linearization:

A(rYx A (r)=4'(0)r. (4.1)

The Hamiltonian that incorporates the above linearized order parameter profile
is denoted by /4 and is given by

4
h=vpsind poy+ L(r) (6,{+0a2n)
r (4.2)

=vpsind p,g;+ 4 (0o, {+0,7)
and the resulting approximation to the Greens function, obtained by using this
Hamiltonian, is denoted by G, :

ae, . S
Gy (x, x;w)zznuFN(O)[;n—“sm .9[U < — 10 U+

]. (4.3)
{=rcos(y )

n=rsiny — ¢)

If we square h we obtain, amongst other terms, a harmonic oscillator Hamiltonian
for the conjugate dynamical variables { and p, (1 1s a ¢-number)

W= pi2p+ p* 4+ n7)2 + (2/2) 0, (4.4a)

where the mass u and frequency £ are given by®

1
=———, Q=2 4'(0)sinI. adb
. 2(vg sin §)*° vy 4°(0) sin ( )

Equation (4.4a), which relates 4 to the Hamiltonian of a harmonic oscillator, makes
it natural to express 4 in terms of the usual annihilation and creation operators a
and a* of the harmonic oscillator:

a=/pQ/2{+ip,/J2uQ, at=puR/2{—ip,/\/2u8. (4.5)

Furthermore, we also use

ot = (0,1 1i6,)/2. (4.6)

* There should be no confusion between the oscillator frequency Q and the solid angle Q,, the latter
only appearing in the measure of angular integrals. Note that we have assumed 4'(0) is positive. This
is compatible with the choice of order parameter phase specified in Section 2. Furthermore, since 9 lies
in the range 0 to n. sin 3 is positive and consequently the oscillator frequency £ is positive.
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These are the stepping operators for o,; ie., if |6) is an eigenvector of o, with
eigenvalue ¢ (= +1) then

02|6>:G|a>7 o= +1
ot |=1>={+1), gt |+1>=0, (4.7)
o |—1>=0, 6 |+15=|—1>

In terms of the above operators we find
hz\/ai(a'a*—a*a)+\/qu/2azn. (4.8)
We need to determine both the eigenvectors and eigenvalues of A in order to
calculate G, and to this purpose we use the basis vectors |n, >, where
ataln,cy>=n|n, o>, n=0,1273, ..,

4.9)
g,lncd=0ln0), g=+1.

A little consideration indicates that eigenvectors of 4 can be written as a linear
combination of |n, —1) and |n—1, +1). In terms of the parameter

A=./uQ2y, (4.10)

it may be verified that for n #0,
Eigenvalues = E,, =5 /A’ + nQ, } s=+1 (4.11a)
Eigenvectors = |E,,> =u, In, —1>+uv,, [n—1, +1), n=1,213, .. (4.11b)
Un =11 =HEn),  vu=—is JHI+AE,), (4.11¢c)

while for n=0 the eigenvector is unpaired; the eigenvalue is not accompanied by
one of the opposite sign:
Eigenvalue= E,= — 4, } ne0 (4.12a)
Eigenvector = |E,> =0, —1) e (4.12b)

The diagonalization of the Hamiltonian 4 containing the linearized vortex profile
has led to a sequence of “oscillator levels” in the core of the vortex. We shall use
these to calculate the local density of states.

S. DETERMINATION OF THE LOCAL DENSITY OF STATES FOR THE
LINEARISED VORTEX PROFILE

For the calculation of the local density of states, we introduce a resolution of
unity into Eq. (4.3) for G. It takes the form

U=|Eg){Eol+3. Y, |E,D(E,l (5.1)

s n=1
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and we obtain

dQ
Go(x, x; w)=2nvp N(0) I ks

{CE, DCELIED
4y y SRy |

s n=1 ns

nlg[U{@IEo)(EoIC)

w—E,

(5.2)

{=rcosty - @)
n=rsiny @)

Next we write the energy eigenfunctions of the harmonic oscillator (whose mass
and frequency are given in Eq. (4.4b)) as

Iny=,(0). (53)
We furthermore use the Dirac identity

lIm——l——éE ) 5.4
n E—-x—i0, (E-x (3-4)

and, after a straightforward calculation, obtain an approximation for the local
density of states following from the linearised vortex profile:

2
p(E;x)zp,_(E;x)s;lm Go(x,x; E—i0, ),

= Ao, N(O)f—sm 9= Uqbo(c)2 SE— E,)

+Y S [l @u0) + ol @, .(C)z]é(E—E.,.\»)}

s n=1

]. (5.5)
C=reost @)

n=rsinty @}

There are two simplifications of this formula that can be made.

First, the azimuthal angle ¢, which is integrated over a range of 2z, can be
shifted by the “external” angle ¢ (see Eq. (2.1)); ¢ — ¢ + . This makes it manifest
that the local density of states depends, as a function of position, only on r, the
radial distance from the vortex.

Second, the quantities |u,|? and |v,,|” that appear in the above sum may both,
as a result of the ¢ integration, be effectively replaced by 3. This can be seen to
come about by considering what happens when ¢ is replaced by ¢ + n. Under this
change n changes sign and hence, via Eq. (4.10), so do the A’s that appear in the
coeflicients u,, and v, given in Eq. (4.11c). Thus on combining the contributions of
¢ and @ + 7, the A’s within [, J° and |v,,]? cancel to zero on ¢ integrating.

| 2

595:2231-10
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The above simplifications allow us to write

pu(E; %) = 2nvFN(0)j—Q—sm9[{%(:)25(5—&)

+2 Z P+, .(CF]«S(E—E,.A-)}V

G r—I

]. (5.6)
rcos{p)

O =
n= —rsin(p)

This formula still requires the evaluation of the 3 and ¢ integrals for its explicit
determination. As we shall show below, the dominant contribution to the local den-
sity of states at energies E* < 2vy. 4'(0) follows from the single unpaired level with
n=0, the zeroth oscillator level. Denoting its contribution to the local density of
states by p, (E;x)® we have, on substituting the known form for the ground-state
of the harmonic oscillator of mass and frequency given by Eq. (4.4b):

de 5
pL(E; X) = 210, N(O) | Tksin 8 @y(()? 6(E - E,)

{=rcos{g)
n= —rsinf{e)

~r* A'(0)cos’ ¢
v sin 9

= N(0) vy 4'(0)/n j do r‘ d3sin*? 9 exp[
« S(E— A'(0) r sin o). (5.7)

The delta function makes the ¢ integration straightforward (two values of ¢
contribute) and leads to

2 O(4,(r)’— E?)
E;x)%=—"=N(0) /vp 4'(0) — s
pL( X) \/; ( ) Up ( ) \/AL(")Z—Ez

72 . " (A (r)Z_EZ)
( 32 _ ML
XL) d9 sin .9exp[ vFA’(O)sin.9:|’ (5.8)

where ©(x) is the Heaviside step function and all the r dependence has been
expressed in terms of the linearised order parameter profile 4, (r) given in Eq. (4.1).

An alternative representation of p;(E;x)® which may be useful in some
circumstances uses a result involving the Bessel function of imaginary argument K|,
[12] which is proved in Appendix B:

ni2
J d9 sin®? § exp[[ — w/sin 9] = —— f dv v Ky (w + v). (5.9)
0

r(s/z )

Using the above result we have

E?) ( (AL(r)z—Eﬂ)
E ()=_NO y 0 d v?21( e |
pL(E;X) (0) /v 4'(0) \/WJ v vy 4'(0)

(5.10)
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It is noteworthy that in the above formulae for p,(E;x)'® the only quantity
appearing with the dimensions of (energy)?, apart from the quantities £> and
4.(r)% is the parameter vy 4’(0) and this quantity sets the natural scale of energy
of the local density of states. If we write 4'(0)= dgcs/E with 445 the bulk gap
amplitude and £ the “core size” of the vortex [6, 11, 13] then the natural scale of
(energy)’ in the problem is n(&pes/E) A3eg, Where® Eges = /T dycs.

Equation (5.8) (or Eq. (5.10)) has been derived assuming a linear dependence of
the order parameter profile 4(r) and this sets the validity as a function of . When
A(r) is appreciably different from its linearized approximation, 4, (r}), Eq. (5.8) is no
longer a good approximation to the local density of states.

Let us return to our promise, made above, of showing that it is a good
approximation to write

PUE; X)) pL(E; x) for E?<2vp 4°(0). (5.11)

In Appendix C, we estimate the contribution of the excited states that appear in the
sum over n in Eq. (5.6). A comparison of Egs. (C.10), (C.11), and Eq. (5.8), in the
appropriate limits, indicates that the contribution from the terms with n>1 is
down on the n=0 term (when it is non-zero) by a factor <(E*/(2v 4'(0))*2

6. INVESTIGATION OF THE FORMULA DERIVED FOR THE LOCAL DENSITY OF STATES

Equation (5.8) or (5.10) for the local density of states is a complicated object and
in this section we shall investigate some of its properties.

(1) Total Density of States/Unit Length at E=0

The total (or global) density of states/unit length of vortex is obtained by
integrating the local density of states over the x, y plane. It is defined by

pUE)= [ dr pu(E:x) =2 j: rdr p (E;x), (6.1)

the last equality following from the cylindrical symmetry of p,(E; x). Let us con-
sider this quantity for the case of very low energies by setting £=0 in Eq. (5.8). To
evaluate p (0} it is simplest to work with the n=0 term from Eq. (5.6) specialised
to E=0; the normalisation integral of ®] determines the r integral and an elemen-
tary trigonometric integral is left. The result obtained is’

v

2 4°(0)

p1(0)= N(O). (6.2)

¢ If the core size of the vortex, &, is so small that (k&)™ ! is not a small parameter (cf. Ref. [13]) then
the kinetic energy linearization of Section 3 will not be a good approximation to the full quadratic
momentum dependence.

7 No superscript of zero need be attached to the local density of states appearing on the left-hand side
of this equation since the contribution from the n # 0 states is zero for E =0; see Eq. (C.10).
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This coincides with the result presented by Caroli ezal. [2] when their order
parameter profile is taken to be the linearized one of Eq. (4.1). There is one point
of discrepancy, however. The result of Caroli et al. is stated [2] to include only a
single spin projection, whereas the result of this work included both spin projec-
tions. There appears, therefore, to be a factor of two discrepancy between the two
results. We have carried out tests on the approach used in the present work with
no discrepancies appearing and we maintain that Eq. (6.2) is the low energy density
of states including both spin projections. More discussion of this point is contained
in Appendix D.

(1) Behaviour of the Local Density of States as a Function of Energy at Fixed r

Equation (5.8) or (5.10) for the approximate local density of states has, as a
function of energy at fixed r, a striking feature in the form of the singular factor
(4, (r))—E?) "2 60(4.(r)* — E?). The integral in, e.g, Eq. (5.10) is smooth and
when 4,(r)> — E* < vp 4'(0) the integral can be replaced by [12]

D e vRK (V) = 22 [ 1(5/4) T2 (63)

0

leading to the approximation

[1(1/4)T? O(4,(r)* ~ E?)
E;x)x N(0) /20y 40 :
pL(E;x) o VOV 410 =R

A (r)? = E2<pp A'(0). (6.4)

This is a remarkably simple result,® indicating a very sharp structure occurring at
E=4.(r). We present a plot of this function as a function of E for a fixed value
of r. There is strong evidence for this sort of behaviour in the numerical findings of
other authors. For example, in Fig. 2e of Ref. [7] the leading peak in the local
density of states has an “edge” like structure which lies very close” to E=4,(r).
Additionally, in Fig. 2 of Ref. [6] there is a sharp peak in the density of states;
however, it occurs at £x % 4,(r); we believe that in this reference the axis has been
mislabelled and requires a rescaling by a factor 3.

A further feature of Eq. (6.4) is the value of the local density of states it leads to

at E=0:

F(1/4)12 N(O) /20w 4'(0
pu(0:x) =L (6; NO) V20e 4O) e a00) (6.5)

A.(r) '

81t is tempting, and probably reasonable, to incorporate some of the effects of non-linearity of the
order parameter profile, 4(r), into the above formula, Eq. (6.4), by simply replacing 4, (r) by 4(r).

? The fact that Ref. [7] used a cylindrical Fermi surface and not a spherical one only shows up in
Eq. (6.4) as an overall numerical factor following from a modification of the 3 integrals. Additional
features are present in Fig. 2 of Ref. [ 7] compared with the simple model of Eq. (6.4). The most obvious
is the additional peak at the edge of the continuum E ~ Ay5. It seems plausible that in the hyperbolic
tangent order parameter profile of Ref. [7] a second level (in the sense of the present work) lies on the
edge of the continuum and makes its contribution to the local density of states.
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16+

0 ElApcs
0 0.3

FiG. 1. The approximate density of states p (E, x)!°), given in Eq. (6.4), is plotted in units of the
normal state result 2¥(0) as a function of E with r = x| held fixed. Following Ref. [6] we have taken
the order parameter amplitude to be 4,(r) = dpcsr/Epes With Eges =g /n dges and Ay the bulk gap
amplitude. The value of r selected is r = 0.3 g5 such that 4 (r)=0.3 Ag5. The sharp “edge” structure
discernible in the figure occurs at £ = A4, (r)=0.3 dy¢s.

This should be directly comparable, in the small r region, with results presented in
Fig. 2 of Ref. [6]. To make the comparison with this reference, we note that the
author takes, for r < {gg, the order parameter dycsr/Epes With Eges = vp/T Ages-
Normalising with respect to the normal density of states (which is 2N(0) in the
present work) and using the order parameter of Ref [6] we obtain'®
pL(0; X)/2N(0) ~ ¢(r/éncs) | with  e=[I(1/4)1%/(6 /2n)~0874. Thus for
ri€pcs =0.3 we obtain p(0; x)/2N(0)=x291..., while from Fig. 2 of Ref [6] we
estimate the same quantity to be approximately 2.9, indicating a close agreement.

It should be remarked that Eq. (6.4) has a familiar look to it because a factor
similar to its singular denominator appears in the fiigh energy local density of states.
To zeroth order in derivatives [14] one obtains a high energy density of states
which is proportional to |E| (E*— 4(x)?) 2 ©@(E?— 4(x)*) and here we see the
order of E2 and 42, in the denominator, has been reversed relative to Eq. (6.4). This
similar behaviour seems to stem from the effective one-dimensional character of
motion of particles near the Fermi energy, but in all other respects the formulae
seem to have quite distinct origins.

7. DiscUsSION

In this work we have obtained an approximation to the low energy local density
of states for a vortex. Qur approach started with the Bogoliubov Hamiltonian and
involved linearizing the momentum dependence of the kinetic energy. As an

It may be noted that Eq. (6.5) may be written in a form that is independent of the choice of length
scale used to describe the vortex. It is p, (0; x)/p (0: x )= |X'|/|x| =r'ir. 4, (1) <€ vy 4(0).
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intermediate step we derived Eq. (3.14) which gave certain elements of the Greens
function in terms of the “one-dimensional” operator

. ~ . A(r
vesind pioy+ V(r)=vesin g p,a3+~—(r—)(a,4:+a,n). (7.1)

The Hamiltonian in Eq. (7.1) is a simple operator that depends on the canonically
conjugate operators p, and {, along with the c-number parameters 3 and ¢, and as
such we have a two-parameter family of operators labelled by these c-number
variables. A complete determination of local spectral properties of the vortex, such
as the density of states, requires knowledge of the eigenvalues and eigenvectors of
the above operator over the full ranges of 9 and ¢.

In the present work we approximated A(r) and exploited the formal operator
content of the theory to calculate to local density of states. It turned out that the
eigenstate of Eq. (7.1) belonging to the eigenvalue of smallest magnitude (calculated
with the approximate 4(r)) contained essentially all of the low energy behaviour.
The resulting structure in the local density of states had its origins in a weighted
average, determined by the angle 9, over the contributions from the radially bound
aspect of the state along with the free translational motion along the vortex axis.

Despite the essential simplicity of the calculation presented in this work, we
cannot help feeling that we have not done Eq. (7.1) full justice. The operator in
question contains essentially full information on the excitation states that are either
bound or scattered'' by the vortex. It seems very plausible that there exist
approximations or treatments of A(r) different to the one used here, which are able
to capture something other than information on the low lying bound states.

APPENDIX A

Proof of the Relation (x| f(p, x) |x)> = [ (d“k/(2n)*) f(k—iV,x). (This result is
used in Section 3.) For a function of momentum and coordinate operators f(p, x)
appropriate to a particle moving in d dimensions we have

X fip, %) Ix") = f(—i V', x)8(x" —x")

dy.
=f(—iV, x’)f%:;—dexp[ik(x’—x”)]
d’k
=fa—)—dexp[ik~(x'—x”)]f(k—iV’, X) (Al

"' For the scattering states it is necessary to include an important contribution of the magnetic field
by incorporating the vector potential into the problem in the original form it appeared in Eq. (2.2a), ie.,
by making the substitution p - p+eAoc; in Eq. (7.1). In Appendix E we show, by performing a unitary
transformation, that the vector potential effectively cuts off the long distance spatial variation of the
phase of the order parameter, thereby allowing the scattering states to propagate freely at sufficiently
large distances from the vortex.
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with V acting on quantities to its right. We then set x’ = x” = x and obtain the given
equation.

APPENDIX B
Proof of [5?d3sin*? 9exp[ —w/sin $]=(1/I(5/2)) [& dv v*?Ko(w+v). (This

relation is used in Section 5 of this work.) The 3 integral is referred to as I(w) and,
in terms of the new variable

t=1/sin §, (B.1)
it takes the form
= gt
I(w)= t % v B.2)
() f. — (

This is compared with the Bessel function of the imaginary argument K,(w) which
can be written [12]

Ko(w)=f L (B.3)

v/ =1

We can express Eq. (B.2) in terms of Ky{w) by using the identity

-5/2

] oL
=— dv v¥2e ¥ .
F(5/2)Jo v v (B.4)

Thus using Eq. (B.4) in Eq. (B.2) and interchanging orders of integration we obtain

1 x L= dt
I(w)y=— dv v"”zj = e rrvin (B.5)
t t-—1

and using the Bessel function representation of Eq. (B.3) leads immediately to the
given resuit.

APPENDIX C: ESTIMATION OF THE CONTRIBUTION OF THE STATES WITH n > |
TO THE LOCAL DENSITY OF STATES

In this appendix we provide an estimate of the contribution of the levels with
n#0 in Eq. (5.6) to the local density of states. For notational simplicity we write

A=/ u*2n=—~A.(r)sing (C.1)
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and omit the argument of A4, . We begin in Eq. (5.6) by writing
Y S8(E—E,)=2|E| 8(E*— 4] sin” ¢ —nQ) (C.2)

and use this to perform the integration over ¢. It quickly leads to

ni2 o @ EZ__ Q Az_ 2 Q
pU(Eix)" " =20, N(O) B [ dgsinzg Y FE IRV OULTE AN
0 2 JET=nQ) /(47— E*+nQ)

x [P (r \/(Ai —E>4+nQ)/A7) + D, _((r /(4] - E*+nf2)/47)*].

(C.3)
The first @ function determines the upper limit of the J integral,
sin § < E*/(2nv,. 4'(0)) (C4)
and if we assume
E? <2vy 4'(0) (C.5)

then Eq. (C.4) implies, for all #, that sin § will be small compared with unity and
we can replace sin 3 by § itself to a good approximation:

sin 9 & 4. (C.6)

Next we set
¢11(C)2+¢n— l(c)2=l‘7 ]fn(g/L) (C6a)
L=~ /v:8/4'(0) (C.6b)

with f,, a dimensionless function of order unity or smaller. On going to the new
integration variable

t=2nv, 4'(0) YE?, (C.7)

we obtain

pLLE: X)) = IN(0) /o A10) (E/(20 4°(0))° [ di (1 —1) 2
0

O —E(1-1) & —
2n/1)(41/E* = (1 —1))). (C8
Ty L, @B - (= 0). (€8)

This equation is a convenient place to estimate p; (E; x)""> %) since much of the E
dependence has been separated out. We shall look at Eq. (C.8) in two limits:
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(a) E?<A4.(r)*=4'(0)*r> Here the Gaussian present in the f,’s cause the
result to be dominated by the term in the sum with n=1 and to be exponentially
small:

1A/ 2n/1)(43 [E?)) ~ exp[ — (2n/t) 47 /E*] (C9)
and

PLE; )"~ N(0) /vp 4'(0) (E*/(2up 4'(0))*? exp[ — 242 /E?]. (C.10)

(b) E?*=x A,(r)* Here we simply set E>= 4,(r)? to estimate the contribution
of the excited states. Up to numerical factors of order unity, we find

(E; x)">® MO) /or 4(0) (A(r)?/ (20, 4'(0))%2 (C.11)

P A4(r)

APPENDIX D: THE RESULT OF CAROLI ET AL. [2] FOR THE
Low ENERGY DENSITY OF STATES/UNIT LENGTH

In this appendix we give a discussion of the result of Caroli et al. [2] for the low
energy density of states/unit length of vortex and that obtained in Eq. (6.2) of the
present work. As stated in Section 6, there appears to be a factor of two discrepancy
between the two results; Caroli ef al. claiming their result includes a single spin
projection while the result given in Eq. (6.2) contains a contribution from both spin
projections.

Our understanding is that in their work, Caroli eral effectively evaluated
Tr 6(E— H) in the limit E— 0, where H is given by Eq. (2.2) of the present work
and Tr denotes a trace in both matrix and configuration space. The matrix trace,
in a particle hole symmetry approximation, is equivalent to the spin factor of 2
appearing in Eq. (2.3) and hence it is our opinion that their result does indeed
include both spin projections. There does not seem any way to test the result of
Caroli et al. by taking the normal limit 4 — 0, since they only present a spatially
integrated quantity which will diverge in this limit. We, by contrast, have expres-
sions for local quantities and are in the position to take the 4 — 0 limit to test that
no spurious factors of 2 have been introduced by the methods used in this work.
The only drawback of taking this limit is that no particular emphasis is given to the
state of interest in this discussion, namely #n=0; the normal limit just tests to see
that correct spectral weight is given to reasonably high energy states—as will be
shown below.

We have taken the normal limit in two places of the present work: (a) in the
Greens function of Eq. (3.14) which was then used in Eq. (2.3) and (b) in Eq. (5.6).
In both cases the correct result of twice the free particle density of states/unit
volume for a single spin projection, 2N{(0), was obtained. We present details of the
latter calculation in this appendix.
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Normal Limit of the Local Density of States

To go to the normal limit of the local density of states p,(E;x), given in
Eq. {5.6), we need to take the limit 4'(0) — 0 at fixed E and r. From Eq. (4.4b), Q
is proportional to 4'(0); thus we are effectively taking the limit £2 — 0. The typical
excitation numbers n ~ E*/Q will, at fixed finite E, become very large and we can
use the “semiclassical” or WKB limit of the wavefunctions:

2 Q [ 2 242
¢,,(§)~z;(1/\/;((n+ 1/2)Q—u9-c-/2)) (D.1)
Q 1
k"“:. D.2
T \/2Qn/;1 -2)

Since very high excitation numbers are present we shall, furthermore,
approximate the sum over » in Eq. (5.6) by an integral,

o (Eix)~ 2nuPN(0)j——sm9[§f dn—\/mn__é(E—s,/nQ)] (D.3)

On evaluation this leads to the correct result of 2N(0).

The reproduction of the correct free particle local density of states in the above
calculation, albeit in a slightly non-trivial way, leads us to believe in the essential
correctness of the methods used this work.

APPENDIX E: INCORPORATING THE VECTOR POTENTIAL INTO THE PHASE
OF THE ORDER PARAMETER

In this appendix we consider a contribution of the magnetic field that is impor-
tant for states that extend a large radial distance from the vortex, for example,
scattering states.

The contribution in question follows from replacing the momentum operator in
Eq. (7.1) by the gauge covariant form that is present in Eq.(2.2a): p+eAg;.
Projecting onto the é, axis, as in Eq. (3.10a), leads to p, +¢e(é,-A)o;. We take
A to point in the lﬁz(~sin Y, cos ¥, 0) direction (¢ is defined in Eq. (2.1)) and
write A in the form

A(r) =“(’)¢ (E.1)

with the function a(r) having the properties [11]

Lirg alr)/r=0 (E.2)
Lim a(r)=1. (E.3)

o
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Equation (E.2) follows from the requirement of finiteness of the magnetic energy
and Eq. (E.3) corresponds to the total magnetic flux of the vortex being one flux
quantum, n/e=2nh/2e in dimensionful units. Furthermore, the function a(r) is
assumed to vary on the scale of the London magnetic penetration length 4.

A simple calculation indicates that

é,-y=—njr: (E.4)
thus we can write

a(r) _

e(én~A)=—’12—r2=—5X(C’ﬂ)/5C (E.5)

with

v < ot a(r’) ’ ’
wom=[ donsss =T (E6)
We thus have
pite(é-A)oy=p, =0y, n) o3/ (E.7)

and we replace p, by the above quantity in Eq. (7.1), allowing us to write

) . A(r
vpsin 3(p, +e(é,-A)o;) 63+T) (6,{+0,n)
. A ) )
= e [UF sind po;+ __(rr) (6, {+o,n) 92'1‘”] e 7, (E.8)

The virtue of Eq. (E.8) is that the original Hamiltonian, with the vector potential
in the kinetic energy, has been related, via the unitary transformation exp[iys,], to
a new Hamiltonian, where the vector potential lies in the phase of the order
parameter. It may be straightforwardly demonstrated that at large distances from
the vortex, where a(r) = 1 and A(r) —» Agcs, the effective order parameter

A(r ‘ .
T)(01C+Uzﬂ)€2'lal_’dscsaz sign(n) (E9)

with the right-hand side being equivalent, for all purposes, to the equilibrium order
parameter of a uniform system.

The incorporation of the vector potential in the way outlined in this appendix is
essential for scattering states. In the absence of the vector potential these states
would be influenced at arbitrarily large distances from the vortex, whereas in reality
the influence of the vortex is only of the order of the scale of variation of the
function a(r), i.e., the London magnetic penetration length, 4.
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