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1. Introduction

Physics is, by its nature, a mathematically based subject and its laws are expressed
in a concise mathematical form. Many tools from mathematics are used to find
these laws and once these laws are established, physicists exploit the fact that
using mathematical reasoning allows us to infer consequences of these laws in new
situations. For this reason, a significant fraction of a physicist’s time is spent,
both in training and beyond, learning and applying mathematics.
Until recently, the only mathematical assistance that physicists have had is

in problems of a numerical nature (“number crunching”), where computers have
been employed. There have, however, been developments along different lines in
the field of computation in the last few years. With the availability of cheap yet
quite powerful personal computers and with advances in programming, it is now
possible to do far more mathematics on computers than that which comes into
the category of numerical mathematics. In this article I discuss one of the rela-
tively new computational tools that can simplify (or even eliminate) much of the
mathematical manipulations that physicists do. This tool is called “Computer
Algebra” or sometimes “Symbolic Computation.” The most fundamental aspect
of computer algebra is the ability of a computer to manipulate symbols such as
x and y rather than numbers such as 0.1377 and 5.2342. Thus while conven-
tional programs can efficiently perform numerical operations such as evaluating
(0.1377 + 5.2342)3, a computer algebra program can, amongst many other things,
expand (x+y)3 for general x and y and will produce the symbolic answer, namely
x3+3x2y+3xy2+y3. For such a simple example it is, of course, possible to perform
the elementary expansion with a pencil and paper, but it would be tedious and
daunting to (correctly) evaluate the coefficient of e.g. x39 in (1 + x)23/(1 + 2x)17

by hand; with a computer algebra program it is straightforward and virtually
effortless1.

1The sequence of interactive operations necessary to find the coefficient of x39 in (1+x)23/(1+



In short, much of the tedious algebra and other mathematics (see below) that
has to be performed to get at answers “of direct physical interest” may be relegated
to computers and I will explore some of the implications of computer algebra
systems for Physics.
This article is aimed at a reader who has little or no experience of computer

algebra and gives a brief glimpse of the great potential of programs of this type,
indeed I hope that after reading this article, readers will be sufficiently interested
to go out and try a computer algebra program.
I should say that what this article is not is a comparison of different computer

algebra programs that are in existence; most of the computer algebra programs
available are able to admirably cope with the small number of topics covered here.
In order to illustrate the simplicity of the instructions needed to command one of
these programs, I have given examples of these in the language of the computer
algebra program Maple [1], which is the one I am most familiar with.

2. Visualisation

Before we discuss some of the direct mathematical capabilities of a computer
algebra program, I wish to consider an important aspect of these programs that
their name does not immediately suggest. This is their ability, via graphics, to give
detailed insight into a mathematical object. With a simple one line command we
can instruct the computer to plot (in 2 or 3 dimensions) a function we have been
“working on.” The graph appears as a coloured image on the computer screen a
short time after the command has been issued and it is a matter of one or two
key strokes to change parameters or the range plotted to see new aspects of the
function. Repeated variations of parameters and replotting2 leads us to acquire
an insight into the shape of the function and its typical variation. We may indeed
get to “know” the important aspects of the function and the insight gained in this

2x)17 in a typical computer algebra program is to
(i) enter the expression,
(ii) type the instruction to expand the expression about x = 0 to O(x40)
(iii) read off the required coefficient (which happened to be -398059188302289174528: It is

perhaps needless to say that I have not checked this answer by hand!).
The actual time the computer runs for this straightforward example is a fraction of a second;

typing the expression takes longer! Of course more demanding calculations or more complex
operations may take longer.

2It is possible to produce moving plots, where e.g. a parameter in a function is varied with
time and the successive plots are merged into a “movie.”



way may well be one of the most profound benefits of such a program.
To give an example of the graphical abilities of one of these programs, let us

consider a well known subject from mechanics3.

2.1. Damped harmonic motion

For this case the particle, with coordinate x(t) (t = time), is taken to obey New-
ton’s equation of motion. With a mass of unity, this has the form

d2x(t)

dt2
+ 2γ

dx(t)

dt
+ ω2x(t) = 0 (1)

and the solution of this that starts at the origin at time zero with unit velocity is,
for the special case ω = 1:

x(t) =
e−γt sin(t

p
1− γ2)p

1− γ2
, γ2 ≤ 1. (2)

This is a function of two variables: γ and t whose character may be succinctly
illustrated by a three dimensional plot of x against t and γ and in Fig. 1 we give

3High quality (publication quality) prints of graphs are generated by Maple if a postscript
printer is used. Having a deskjet printer in my office made it more convenient to produce prints
on this machine with a numerical package and in fact all the figures in this paper were produced
in this way. At the present time Maple does not give full control on all aspects of figures (such
as axis line-thickness) on a deskjet printer.



the plot of this quantity.

Figure 1

The plot illustrates, in a single view, the oscillatory character of the solutions for
small γ and the damped character at larger γ.
Returning to the physics problem of damped motion, we are also in the position

to see how the damping dissipates the energy of the particle as time progresses.
For this we produce a two dimensional plot of the energy

E(t) =
1

2

µ
dx

dt

¶2
+
1

2
x2 (3)

associated with the motion. The graphing facilities allow more than one curve to
be plotted on the same page and in Fig. 2 we have plotted the energy (3) along



with the exponential curve 1
2
e−2γt for damping parameter γ = 0.2.

Figure 2

Most textbooks assume or approximate the exact result for the instantaneous
energy, E(t), by that of the exponential curve. What we learn from this graph
is that the decay of the energy is not a pure exponential curve but an oscillation
about one. Thus with a relatively straightforward application of a computer
algebra program, we can see the validity of a standard approximation and, if
we wish, go beyond this. Possibly, the simplest idea that comes to mind is to look
at the ratio of the two functions. We can thus plot E(t)/

¡
1
2
e−2γt

¢
as a function

of t. In Fig. 3 we have plotted this quantity and a simple oscillatory function is



found.

Figure 3

This could spur us on to perform more analytical work (also possible on the com-
puter) and in this way a rather full picture of what is going on may be obtained.

2.2. Zero of a non-linear function

Another case where the graphics facilities can come into play is when we want to
find the zero of a non-linear function. In this case numerical packages exist within
the program to deal with such problems however it is instructive (and sometimes
even essential) to see explicitly what the function is doing in the vicinity of the
zero. A “hands on” approach to this problem is to plot the function, see where it
passes through zero, then replot the function in a smaller interval roughly centred
on the place the function passes through zero. Repeating the process progressively
focuses in on the crossing point until the zero is determined to sufficient accuracy.
Let us consider an explicit example where we require the zero of a function.

In Statistical Mechanics, the determination of the magnetization of a mean field
model of ferromagnetism in the absence of an external magnetic field [2] requires



the solution of a non-linear equation. Apart from being of interest in its own right,
the magnetization determines a number of important thermodynamic properties
of the ferromagnet. It is found that a mean field model leads to a relation between
the magnetization m and temperature T (when expressed in appropriate units)
given by the equation

m− tanh(m/T ) = 0. (4)

This is to be solved for the non-zero value of m (if it exists) that satisfies the
equation; here we shall do so for a single temperature.
With the choice T = 0.9, we have produced plots of f(m) ≡ m− tanh(m/T )

versusm. In Fig. 4 plots with three succesively smaller intervals ofm that include
the zero of f(m) are given.

Figure 4

By reading from the final graph the value of m at the crossing point we are able
to estimate its value as 0.52...Thus with nothing that is really recognizable as
programming, we have been able to solve for the zero of a non-linear equation!



2.3. Probability distribution for the quantum mechanical harmonic os-
cillator

The graphics facilities of computer algebra programs allow us to produce textbook-
like graphs of quantities that we may currently be working on or studying, with
the remarkable advantage that we are in full control of what is plotted. An exam-
ple of this that we shall consider is the probability distribution of the quantum
mechanical harmonic oscillator associate with the potential V (x) = 1

2
mω2x2. For

this case the probability distribution is the modulus squared of the wavefunction
and when the oscillator lies in the energy eigenstate labelled by quantum number
n (n = 0, 1, 2, 3...), its probability density is given by [3]

Pqm(n, x) =
1√

π2nn!
[Hn(x)]

2 e−x
2

when we have set the quantities ~, m and ω associated with the oscillator to unity
and where Hn(x) is a Hermite polynomial.of order n. In Fig. 5 the probability
density is plotted for the relatively high quantum number, n = 20, along with
result following from classical mechanics when the same energy has been selected:

Pcl(n, x) =


1

π

1√
2n+ 1− x2

, x2 ≤ 2n+ 1

0, x2 > 2n+ 1.

(5)



Figure 5

We can go further. Suppose we assume the actual distribution observed is
not the straightforward quantum mechanical result but rather a “smeared” re-
sult obtained by adding contributions from a finite range, L, of x associated with
imprecision of our measurement apparatus. This might be represented as a con-
volution

Psmeared,qm(n, x) =

r
1

π

1

L

Z ∞

−∞
dx0 exp

£−(x− x0)2/L2
¤
Pqm(n, x

0)

and we can use the computer algebra program to both analytically evaluate the
integral (because it is a polynomial × a gaussian) and plot it. In Fig. 6 we give



a plot of Psmeared,qm(5, x) for L = 1 along with Pqm(5, x).

Figure 6

The smeared distribution plotted has greater similarity to the classical distribution
than the quantum mechanical one as a result of the choice made for L, the range
of smearing . Progressively reducing L causes Psmeared,qm(n, x) → Pqm(n, x), as
the interested reader may verify.
The exploration of topics that by hand are more than a little tedious may, as

the above example shows, be readily performed with a computer algebra program.

3. Interactive mathematics

In the introduction, section 1, two simple examples were given of calculations
that all computer algebra programs can perform. These may seem impressive
when met for the first time, but it has to be realised that straightforward alge-
bra (as the examples were) is only the merest tip of the iceberg as far as these
programs go. Currently available programs are remarkably comprehensive, having
the capability to deal with many many more branches of mathematics than almost



any individual (student, teacher or professional) is likely to meet in their entire
career and it would not be appropriate or interesting to list the topics covered
by such program; basically, unless a mathematical subject is remarkably esoteric,
it will be included in the package! Instead, I shall merely choose some examples
that illustrate the ability of these programs to deal with a few different areas of
commonly met mathematics. What is particularly interesting is the interactive
way such a program can be used to carry out the mathematical manipulations.

3.1. Matrix problem

Let us consider a matrix problem as an example.
It is very common in Physics to have solve for the eigenvalues of a matrix. A

basic case occurs when we have coupled oscillators in classical mechanics. The
equations of motion for the oscillators are written as

d2x1
dt2

+ ω21x1 + �x2 = 0

(6)
d2x2
dt2

+ ω22x2 + �x1 = 0

where ω1 and ω2 are the angular frequencies of the uncoupled oscillators and the
coupling between the oscillators is given by �. To determine the new fundamental
frequencies of this system (the frequencies of the normal modes), we are led by
textbook methods [4] to solve for the eigenvalues of the matrix

A =

µ
ω21 �
� ω22

¶
. (7)

Can a computer algebra program help us here ? The answer is yes. Once the ma-
trix is entered into the computer, we type (in Maple) the command “eigenvals(A)”
and what is returned to the user are analytical results for the two eigenvalues. One
of these is given by the computer as4

λ1 =
1

2
ω21 +

1

2
ω22 +

1

2

q
ω41 − 2ω21ω22 + ω41 + 4�

2 (8)

4We should notice that the eigenvalue in (8) could have been written in the simpler (or nicer

form) 1
2

µ
ω21 + ω22 +

q
(ω21 − ω22)

2
+ 4�2

¶
; however the program does not have much aesthetic

sense and the user has to have some interaction with the computer, giving various instructions,
to get the result in a desired form.



and the eigenvector that corresponds to this can, with the same ease, also be
obtained.
Suppose for the problem in hand, we know that ω1 À ω2. This suggests we try

an asymptotic expansion5 to see the leading correction to the uncoupled result.
The instruction in Maple “asympt(λ1, ω1, 4)” immediately6 yields the result

λ1 = ω21 +
�2

ω21
+O(

1

ω41
). (9)

If we need to perform the asymptotic expansion, to a higher order, say 6, then we
simply type in “asympt(λ1, ω1, 6)” and the answer, which would by hand involve
far more work, is automatically produced7. Given the results of (8) or (9), we
can now manipulate them as desired, e.g. substituting in numerical values or
performing further manipulations.
Thus in the above way we can interactively carry out mathematics with a

computer algebra program.
It is commonplace, when using computer algebra programs, to generate ex-

pressions on the computer that are tens (or more) of pages long. These never
normally see the light of day, since usually only a small piece of the final expres-
sion is required. Nonetheless, to perform all the steps leading to a compact result
could take an enormous effort. Because we avoid writing down any of the interme-
diate steps8 (which, if desired, can be saved by the computer) and because of the
ability of the computer to rapidly perform fault free calculations on expressions of
great complexity and length, computer algebra programs allow us to perform cal-
culations that are outside the possibilities of most individuals calculating by hand.
Thus just as the use of computers for numerical calculations opened new realms
that were inaccessible by hand calculations, computer algebra opens a different
set of realms involving symbolic results.

5An asymptotic expansion of λ1 is an expansion of this eigenvalue in negative powers of ω1
assuming ω1 is large.

6The Maple instruction means determine the asymptotic expansion of λ1 in ω1 up to O(ω
−4
1 ).

7We find the result ω21 +
�2

ω21
+

1
8ω

2
2(ω

4
2+4�

2)+ 1
4 (

1
2ω

2
2+2�

2)ω22− 1
4ω

6
2

ω41
+O

³
1
ω61

´
. Clearly this would a

significant amount of work if carried out manually.
8I know of an explicit proof showing the equivalence of two different calculational schemes in

quantum field theory that are made with the aid of one these programs where the intermediate
results are not presented, only the end equivalence being interesting [5].



4. Integer and infinite precision arithmetic

Let us look at another feature of computer algebra programs. They can do integer
arithmetic and also arithmetic to any pre-assigned precision.
Integer arithmetic is the ability to manipulate and simplify quantities such as

1
2
+ 1

3
+ 1

279
without expressing the answer as a decimal. Thus in this case we

obtain from the computer the result

1

2
+
1

3
+

1

279
=
467

558
. (10)

Perhaps more interesting is the infinite precision capability. What this means
in practice is that by a simple command, all calculations are performed to e.g. 39
digits after the decimal point (39 can be replaced by any positive integer). As an
example, to 39 digits precision,

4/π = 1.273239544735162686151070106980114896276... (11)

We can use this facility in cases where something numerically subtle is occurring
and the extra precision is needed. A simple example comes from chaos [6] where
the nth iterate of the so called logistic map obeys

xn+1 = cxn(1− xn) (12)

and one uses this equation by starting with one value of x, say x0 and using the
above equation to determine x1 and then substituting this back into the equation
to generate x2 etc.
When c = 4 the iterates exhibit chaotic behaviour and the nth iterate can be

shown to take the form
xn = sin

2(2nθ0) (13)

where θ0 is a constant, determined by the starting point, x0. Here take θ0 = 1.
We find for varying numerical accuracy in the evaluation of e.g. x40 quite different
results:

x40 = 0.05862 to 5 digit accuracy
x40 = 0.9581109402 to 10 digit accuracy
x40 = 0.915671112188 to 12 digit accuracy
x40 = 0.164596556382853 to 15 digit accuracy
x40 = 0.16459655638285268... to higher accuracy.

(14)



The controllable precision of a computer algebra program has allowed us to show
that a chaotic system is seriously susceptible to rounding errors. Furthermore, by
considering xn for sufficiently large n it may be illustrated that these rounding
errors will overcome the preassigned precision of any computer.

5. Numerical packages

Typical computer algebra programs contain a number of very user-friendly nu-
merical packages. Here we shall only discuss the package that numerically solves
differential equations. Let us consider the non-linear ordinary differential equa-
tion:

d2θ(t)

dt2
+ sin θ(t) = 0. (15)

This equation describes the variation of θ, the angle of a pendulum in radians,
with an appropriately time variable t. If θ(t)¿ 1, the nonlinear component in the
equation, sin θ(t), may be replaced by its argument and we recover the familiar
harmonic oscillator equation whose solutions are a combination of sin t and cos t.
In general, however, we have to deal with the intrinsically non-linear equation,
(15). A numerical solution of this may be found using a differential equation
integrator. It only takes a one line command to numerically solve this equation
and two lines to instruct the computer to solve and plot the solution. In Fig 7, we
present a plot of the solution of (15) that satisfies the initial conditions θ(0) = 3.1,
dθ/dt|t=0 = 0 along with the plot of the solution of the linearised equation that is



subject to the same boundary conditions, namely 3.1 cos t.

Figure 7

In point of fact the solution of (15) is one of the “special functions” of math-
ematical physics - an elliptic function. Many of the special functions are defined
by differential equations and as we have seen above, if we require only numerical
information on these, it is as easy to use a computer algebra program to solve the
differential equation as it is to look up or evaluate the special function in question.

6. Comparisons with conventional programs

As outlined above, computer algebra programs contain quite extensive numerical
packages. Given the ease with which mathematical objects may be input into the
computer in one of these programs, it makes it a very natural place to test out
new ideas. The question that arises is given this user friendliness along with a
large set of symbolic and numerical packages in one program, do we only require a
computer algebra program for all our mathematical problems? The answer to this
question depends on the user’s requirements. Computer algebra programs are not



well suited to numerically intensive work; they are relatively slow compared with
purely numerical programs. Thus e.g. the repeated solution of a set of differential
equations over long time scales would probable be best delegated to a numerical
program. It should be noted that quite often the work spent typing an equation
into a computer algebra program for a quick trial of an idea may not be wasted
since facilities exist in these programs for outputting the mathematics in another
language (for example Fortran or C).

7. Drawbacks

7.1. General comments

It has often been said that pocket calculators were the downfall of arithmetic (or
more precisely arithmetic skills). Inevitably, computer algebra programs will be
blamed for the loss of the manipulative skills required of algebra. Taking myself
as an example, I have to say this seems very likely. If I have to calculate the
determinant of a 4 × 4 matrix, I prefer to type the matrix into the computer
and let the “calculating engine” do the work; it is far quicker than doing it by
hand and human algebra is certainly fallible. I will also allow the computer to
have first attempt at integrals that are non-obvious9. This has inevitably resulted
in a lowering of my manipulative skills, but given a computer at hand with an
algebraic program, I believe my productivity has actually increased and I do not
see computer algebra as a disadvantage provided one has a firm understanding of
the mathematics.

7.2. Hidden assumptions

The hidden assumptions made by computer algebra programs are likely to be a
source of error to the unwary.
Let us consider the following situation. A complicated algebraic analysis has

been carried out and an analytic expression for a quantity “a” has been obtained.
This then appears in the integral

R∞
−∞ exp(−ax2)dx. Naively, the integral has the

value
p
π/a. Some computer algebra programs will yield this answer, while others

9The evaluation of integrals using algebraic programs is a slightly dangerous strategy since
integrals are notoriously subtle. Complications such as the “choice of branch” of a root may
result in the program yielding errors. Fortunately, these programs are also able to numerically
evaluate many integrals and this may be used as an independent check of any analytic results.



will refuse to calculate an answer and yet others will pose questions concerning “a”
before evaluating the integral. In fact the value of the integral depends sensitively
on “a”: Z ∞

−∞
exp(−ax2)dx =


∞ Re(a) < 0
∞ Re(a) = 0, Im(a) = 0p
π/a Re(a) = 0, Im(a) 6= 0p
π/a Re(a) > 0.

(16)

Thus the blind application, in this case, of the (incomplete) answer
p
π/a could

lead to a nonsensical result.
Another example that different computer algebra programs treat differently

are square roots. If x is real, does
√
x2 have the value x or |x|. These differ

when x is negative and some programs will automatically simplify
√
x2 to x with

possible errors.
These cases alert us to the possibility that hidden or non obvious assumptions

may be made by computer algebra programs and these may be a source of possible
error.

8. Discussion

I have pointed out above that computer algebra programs allow us to carry out
more complex manipulations then we could do on our own. This allows all users
(professionals and students) to tackle harder and more realistic problems, not sim-
ply restricted to linear or other exactly soluble problems. In the field of teaching
this means that there will have to be significant changes in approach: it is point-
less to set an exercise that can be done in seconds with the aid of the computer
- and hours when done by hand10. The additional intuition about mathematics
that one of these programs can provide needs also to be exploited in teaching, and
hopefully this will compensate for the loss of skills in algebraic manipulation that
will accompany these programs.
Given the remarkable wealth of mathematical material contained in one of

these programs, they seem likely to turn the notions associated with computers
and mathematics on their head. Instead of a computer being used to carry out
known mathematics, computer algebra programs, with their extensive help facil-
ities, will act as source of mathematical knowledge, for example, the user who

10The free availability of these programs means that students may already be using computer
algebra to solve their homework problems.



knows a little of matrix theory (linear algebra) will, in the help sections find all
sorts of special matrices and perhaps not so familiar operations on matrices. There
is some room for improvement in this area; while computer algebra programs have
an extensive help section, it is not really a “reference” section where the detailed
properties of mathematical functions etc. are held. The incorporation of such a
section would make a computer algebra program a largely self contained source of
mathematics, allowing it to replace a handbook of mathematical functions such
as that of Abramowitz and Stegun[7].
I have touched on only a few of the literally thousands of capabilities a com-

puter algebra program has and have indeed not touched on the more conventional
programming facilities that these programs can also support. It is likely that ev-
eryone who uses one of these programs will use only a small subset of the packages
contained within it and it seems clear this comprehensiveness coupled with their
ease of use means that they will have a lasting impact on the way physicists (and
others) do and teach mathematics.
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