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A one locus, biased mutation model and its equivalence
to an unbiased model
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Abstract

Experimental data suggests that for some continuously-varying characters under stabilising selection, mutation may cause
a mean change in the value of the character. A one locus, mathematical model of a continuously-varying biological character
with this property of biased mutation is investigated. Via a mathematical transformation, the equilibrium equation describing a
large population of individuals is reduced to the equilibrium equation describing a mutationally unbiased problem. Knowledge
of an unbiased problem is thus sufficient to determine all equilibrium properties of the corresponding biased problem. In the
biased mutation problem, the dependence of the mean equilibrium value of the character, as a function of the mutational bias,
is non-monotonic and remains small, for all levels of mutational bias. The analysis presented in this work sheds new light on
Turelli’s House of Cards Approximation.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

When genetic material of living organisms is dupli-
ated, during the act of reproduction, there is the pos-
ibility of copying errors (mutations). Here, we con-
entrate on mutations that affect characters possessing
he feature of continuous variation, such as the height
f an individual(Lynch and Walsh, 1998). Mutation

s not solely characterised by its probability of occur-
ence; amongst other things, it is characterised by the
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distribution of changes it induces. While some m
tions tend to increase the value of a character,
ers decrease it and in the recent past it has typi
been assumed that, over the population as a w
the mean mutational change in the character is
(see e.g.Lande, 1976; Bulmer, 1980; Turelli, 198).
There is no a priori reason for this assumption of
tation causing zero mean genotypic change and
is some experimental data to the contrary (Santiago e
al., 1992; Lyman et al., 1996; Mackay, 1996; Keigh
and Ohnishi, 1998). Here, we consider a simple (po
sibly the simplest) model of a continuously-vary
character of a sexual population, that incorporate
possibility of mutation causing a mean change in
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value of the character. We note that a one locus model
may, at the level of alleles controlling the trait, dif-
fer significantly from a mutationally biased multilocus
model, the latter having been investigated elsewhere
(Waxman and Peck, 2003). In particular, in the multi-
locus model, it has been found that there is generally a
persistent turnover—and hence lack of equilibration—
of alleles at loci affecting the trait—unless genetic con-
straint (Zeng and Cockerham, 1993)is incorporated
into the model. No such allelic turnover occurs in a
one locus model and in the present work no form of
genetic constraint is included. By contrast to the be-
haviour at the allelic level, the trait itself rapidly equi-
librates(Waxman and Peck, 2003). The present work
provides an explicit example of the behaviour of a trait
when mutation causes a mean change in its value. We
also provide a novel calculational scheme that may have
applications elsewhere.

2. Model

Consider a very large, effectively infinite popula-
tion of individuals that possess non-overlapping gener-
ations. The effect of genetic drift is negligible, in such
a population, and the model can be treated as entirely
deterministic. Individuals are characterised by a sin-
gle continuously-varying character and the probabil-
ity that individuals survive from birth to reproductive
maturity—their viability—is determined by the value
o to be
d hin
a ter.
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G = x+ y, with the contribution (or effect) of an allele,
to the character (x or y), having been taken to coincide
with the label of the allele. FollowingCrow and Kimura
(1964), we assume thatx’s andy’s can take continu-
ous values in the range−∞ to ∞. Since individuals
with different genotypic values, i.e. with differentG’s,
generally have a different viabilities, the distribution of
alleles in adults generally differs fromφ(x)φ(y) and is
given byw(x+ y)φ(x)φ(y)/w̄, wherew(G) is propor-
tional to the viability of individuals with character value
G and the presence of̄w = ∫

w(x+ y)φ(x)φ(y) dx dy
(the mean fitness of the population), ensures normali-
sation of the distribution. Here and elsewhere, integrals
with unspecified limits range from –∞ to ∞. We take
w(G) = 1 − s(G−Gopt)2 wheres is a positive con-
stant that characterises the intensity of selection. The
quantityGopt is another constant and we work under
the assumption that all values ofG of non-negligible
frequency are sufficiently close toGopt thatw(G) does
not become negative. The adopted form ofw(G), in
the absence of other evolutionary processes, tends to
cause the value of the character,G, to approach its “op-
timal value”,Gopt, over time, and a viability depend-
ing quadratically onG is a mathematically tractable
form of stabilising selection with similar properties
to a Gaussian function exp(−s(G−Gopt)2) (Haldane,
1954).

Mature adults duplicate their genetic material when
they produce gametes and this entails copying errors—
mutations, which occur to each allele independently.
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f the character they possess. Individuals are taken
iploid and reproduce sexually, with two genes wit
n individual determining the value of the charac
here are negligible differences in the viability of
ividuals of the two sexes of common character va
his is thus a one locus, sexual model with disc
enerations.

To proceed, letx(y) label the allele of maternal (p
ernal) origin in an individual. Let the distribution
aternal origin alleles in one generation, immedia
fter formation of zygotes, be denoted byφ(x). Besides
ossibly, the initial generation, the distribution of a

es of paternal origin is identical to that of mater
rigin. Assuming random mating, the distribution

he alleles in zygotes is given byφ(x)φ(y). To proceed
urther, we assume the value of the character of a
anism is additively determined from their two gen
he genotypic value of the character,G, is thus taken a
he probability of any allele mutating per genera
s written asµ. Given a mutation does occur, we take
ffect of the mutated allele,x, to have the distributio
(x− xp − b) wherexp is the effect of the parent
ene, of which the mutated gene is an imperfect c
nd the functionf (•) is a Gaussian distribution wi
ero mean and a variance ofm2

(x) =
√

1

2πm2 exp

(
− x2

2m2

)
(1)

he parameterb characterises the mean change
caused by a mutation—the mutational bias. I
utated individual, this mean change, relative to

unmutated) parental value, is
∫

(x− xp)f (x− xp −
) dx = b. If b = 0 we have the most conventional, u
onstrained model of mutation (see e.g.Lande, 1976
urelli, 1984).
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The gametes produced by an individual contain a
copy of only one of the individual’s two alleles. With
equal probability, only one of the two alleles of an in-
dividual is deposited into a gamete and this, and the
perfect or imperfect transmission (mutation) of alle-
les between parent and gamete is taken into account
by the functionK(x|y, z) = 1/2

∑
ξ=y,z[(1 − µ)δ(x−

ξ) + µf (x− ξ − b)]. In terms of this function, the dis-
tribution of alleles in gametes in the next generation,
writtenφ′(x), is given by

φ′(x) = w̄−1
∫
K(x|y, z)w(y + z)φ(y)φ(z) dy dz,

w̄ =
∫
w(y + z)φ(y)φ(z) dy dz (2)

As it stands,Eq. (2) is non-linear and, by virtue
of the integration, non-local. To make progress,
let us henceforth restrict all considerations to
equilibrium, whereφ′(x) = φ(x). With no approx-
imation, Eq. (2) can then be written as [̄w− w1
(x) + µw1(x)]φ(x) = µ

∫
f (x− y − b)w1(y)φ(y) dy,

where w1(x) = ∫
w(x+ y)φ(y) dy. Working on the

assumption thatµ and 1− w1(x) are both small (	 1),
we accurately neglect very small terms of order of the
product of these terms, with the result

[s(x+ x̄−Gopt)
2 − s(x+ x̄−Gopt)2 + µ]φ(x)

−µ
∫
f (x− y − b)φ(y) dy = 0 (3)
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sX2ψ(X; b, µ) − µ

∫
f (X− Y − b)ψ(Y ; b, µ) dY

= −s α2ψ(X; b, µ) (5)

whereα2 = µ/s− ∫
X2ψ(X; b, µ) dX. Eq. (5), which

now coincides exactly with the equilibrium equation
describing a single haploid locus, may be interpreted as
an eigenvalue equation where−sα2 plays the role of an
eigenvalue andψ(X; b, µ) the eigenfunction. Thus, un-
derlying the equilibrium distribution of the biological
problem is, to high accuracy, alinear eigenvalue prob-
lem. The eigenfunction, since it represents a probability
density, is subject to the conditionsψ(X; b, µ) ≥ 0 and∫
ψ(X; b, µ) dX = 1 and these uniquely determineα2.
Using the form off (•) of Eq. (1), it directly follows

that f (X− Y − b) = e−b2/(2m2) × eb(X−Y )/m2
f (X−

Y ). Using this inEq. (5) along with a new function,
σ(X), defined by

σ(X) = e−bX/m2
ψ(X; b, µ)∫

e−bX/m2
ψ(X; b, µ) dX

(6)

leads toσ(X) satisfying

sX2σ(X) − U(b)
∫
f (X− Y )σ(Y ) dY = −sα2σ(X)

(7)
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here an overbar denotes an average with re
oφ(x): x̄ = ∫

xφ(x) dx, (x+ x̄−Gopt)2 = ∫
(x+ x̄−

opt)2φ(x) dx. In the circumstance that ¯x = 0 (which is
ot generally the case of the present work),Eq. (3) coin-
ides with the equilibrium equation describing a sin
aploid locus, with selection coefficients(x−Gopt)2

nd a distribution of mutant effects off (x− y − b).

. Transformation of the distribution

The presence of averaged quantities, such asx, in
q. (3), means the problem is still non-linear and n

ocal. Changing description inEq. (3) from x andφ(x)
o a new variableX and its distributionψ(X; b, µ), as
efined by

= x+ x̄−Gopt, ψ(X; b, µ) = ϕ(x) (4)
(b) = µe−b2/(2m2) (8)

We observe that inEq. (7),

(i) b is not present in the argument off (•),
(ii) the mutation rate inEq. (5),µ, is replaced byU(b),
iii) σ(X) is non-negative and normalised to un

σ(X) ≥ 0 ,
∫
σ(X) dX = 1.

Accordingly, σ(X) corresponds with the equili
ium distribution in an unbiased (b = 0) problem wher
he mutation rate isU(b). Thus, a direct comparison
qs. (5) and (7) allows us to make the identificati
(X) = ψ(X; 0, U(b)). Using this result inEq. (6) and
olving the resulting equation forψ(X; b, µ) yields

(X; b, µ) = ebX/m
2
ψ(X; 0, U(b))∫

ebX/m2
ψ(X; 0, U(b)) dX

(9)
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This equation indicates that knowledge of the equi-
librium distribution of a single symmetric (i.e.b = 0)
problem,ψ(X; 0, U), for a range of mutation rates,U,
that are≤ µ, is sufficient to determine the equilibrium
distribution,ψ(X; b, µ), for all b, of a biased problem.
Eq. (9) is a statement of theexact relationbetween the
solutionψ(X; b, µ) of Eq. (5) andψ(X; 0, U(b)).

Note that (i) sinceψ(X; 0, U(b)) is non-negative,
it must be a function ofX that has no zeros.
(ii) Taking X → 0 in Eq. (7), yields −U(b)∫
f (Y )ψ(Y ; 0, U(b)) dY = −s α2ψ(0; 0, U(b)). The

left side of this equation is negative definite and
ψ(0; 0, U(b)) is non-negative, so the eigenvalue must
be negative:−α2 < 0. (iii) The smallness of the allelic
mutation rate,µ, means that typically, there will only
be a single negative eigenvalue.

4. House of cards approximation

We can rewriteEq. (7) for σ(X) ≡ ψ(X; 0, U(b)) as
σ(X) = [U(b)/s]

∫
f (X− Y )σ(Y ) dY/(X2 + α2) and

an approximation forψ(X; 0, U(b)) is given by

ψ(X; 0, U(b)) � U(b)

s

f (X)

X2 + α2 (10)

whereα2 is determined from the requirement of nor-
malisation,

∫
ψ(X; 0, U(b)) dX = 1.

The above approximation is valid whenα is small
compared with the “range” over whichf (•) is appre-
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Eq. (7). An eigenvalue of an operator can only depend
on parameters present in the operator, thus on compar-
ison ofEqs. (5) and (7), it follows that we have the ex-
act relationα(b, µ) = α(0, U(b)) where−sα2(0, U) is
the negative eigenvalue of an unbiased problem, with a
mutation rateU. The approximationα � πU(b)f (0)/s
depends onµ andb only in the combinationU(b) ≡
µ exp[−b2/(2m2)] and this form is compatible with
the general relationα(b, µ) = α(0, U(b)).

We have noted above that the smallness ofα

provides the justification of the House of Cards
Approximation. We have thatα(b, µ) � πµexp
[−b2/(2m2)] f (0)/s, hence for b �= 0, α(b, µ) <
α(0, µ). As a consequence, the House of Cards Ap-
proximation, as applied toEq. (7) and resulting inEq.
(10), applies with higher accuracy in a biased mutation
problem than it does in its application in a standard
unbiased problem.

4.1. Mean character value

The equilibrium mean value of the character isḠ =∫
(x+ y)φ(x)φ(y) dx dy = 2

∫
xφ(x) dx ≡ 2x̄. Using

Eq. (4) we have
∫
Xψ(X; b, µ) dX = 2x̄−Gopt

= Ḡ−Gopt and usingEq. (9) and the approximation
of Eq. (10) yields Ḡ−Gopt � (U(b)/s)

∫
dXX

ebX/m
2
f (X)/(X2 + α2) neglecting the denominator in

Eq. (9), which is very close to unity. We can rewrite the
integral as

∫
dXX sinh(bX/m2)f (X)/(X2 + α2) and

in this form, it can be verified that neglectingα, since it
i m
t
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c char-
a e
iable, which is of orderm, i.e. whenα 	 m. When
his applies,α � πU(b)f (0)/s, hence the approxim
ion is applicable whenπU(b)f (0)/s 	 m. An alter-
ative way of viewing this approximation is to note t

t corresponds to the range of mutations,m, being large
ompared with the range ofψ(X; 0, U(b)), which is of
rderα. When this occurs there is little relation b

ween the pre and post-mutated state of an indivi
nd this is close to the exact behaviour of the Ho
f Cardsmodelof mutation(Kingman, 1978). Thus,
q. (10) is called the House of Cards Approximat

Turelli, 1984).
It is of interest to know the properties of the quan

2 ≡ α2(b, µ), which is proportional to the eigenval
f Eq. (5), as a function of the bias parameter,b. We can
etermine a property ofα2 from the observation that th
ame eigenvalue,−sα2, appears in the original eige
alue equation,Eq. (5), and the transformed equatio
s 	 m, is an accurate approximation. Following fro
his, we obtain

¯ −Gopt � µ

sm
e−b2/(2m2)

∫ b/m

0
ev

2/2 dv

=
√
π

2

µ

sm
e−b2/(2m2) 1

i
erf

(
ib√
2m

)
(11)

herei = √−1 and erf(•) denotes the error functio
Abramowitz and Stegun, 1965).

The result above forḠ−Gopt is an odd, non
onotonic function ofb: for |b/m| 	 1, Ḡ−Gopt �
b/(sm2) i.e. proportional tob while for |b/m| � 1,

¯ −Gopt � µ/(sb) i.e. proportional tob−1, seeFig. 1.
The non-monotonic behaviour of̄G−Gopt, as a

unction of b, indicates that although mutations m
ause a non-zero mean change in the value of the
cter, there is only avery limitedamount of chang
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Fig. 1. The deviation of the equilibrium mean genotypic value,Ḡ,
from its optimal value,Gopt, namelyḠ−Gopt, is plotted as a func-
tion of mutational bias,b. Eq. (11) was used to produce the figure and
the parameter values adopted were the “typical” valuesµ = 10−5,
m = 0.2, ands = 0.025 of a sexual population(Lynch and Walsh,
1998).

they can bring about: maxb(Ḡ−Gopt) � 0.77µ/(sm),
with the maximum occurring atb � 1.3m. This non-
monotonic behaviour arises because of the detailed in-
terplay between mutation and selection. In the absence
of selection, the effect of anyb > 0 would be to sys-
tematically increase the character value over time. Se-
lection results in a decreased survival probability of in-
dividuals with large character-values and the combined
outcome of mutation and selection is a non-monotonic
equilibrium behaviour. It may be verified, using a simi-
lar approach to that used in the determination ofḠ, that
when the House of Cards Approximation is applicable,
there is negligible change in the genetic variance from
its b = 0 value.

In the case of a single haploid locus, with mean al-
lelic effectx̄, it is possible to establish results that indi-
cate that the deviation of ¯x from the optimal value,|x̄−
xopt|, vanishes faster than

√
µ, asµ → 0 (see Eq. (6.10)

of Bürger, 2000). We have already noted, in Section 2,
thatEq. (3) is not identical to the equation of a single
haploid locus thus this limiting result does not fulfil
the conditions for it to be applicable in this case. How-
ever, inspection ofEq. (11) indicates that|Ḡ− Ḡopt| is
proportional toµ and consequently does vanish faster
than

√
µ, asµ → 0 (much faster, indeed). We note

that while such limiting results, when applicable, do put
some constraints on the size of|x̄− xopt|, they are fairly
blunt instruments, in that they are unable to capture

or predict the existence of the type of non-monotonic
behaviour we have seen exhibited in|Ḡ− Ḡopt| and
which is also manifested in one locus haploid models.

5. Discussion

As formulated, the model presented applies only to
organisms with a character controlled by a single ge-
netic locus. The calculation may be directly extended
to the case of a character controlled by more than one
locus, and hence more than two genes, if, and only if,
the mutational parametersb, µ, andm have no varia-
tion across loci. In this case, under the approximation of
linkage equilibrium(Bulmer, 1989; Turelli and Barton,
1990), the value ofḠ−Gopt is identical to the result
of Eq. (11). Thus, in this multilocus case, the deviation
of Ḡ fromGopt is proportional to (and limited by) the
allelic mutation rate, and not, as one might guess, the
mutation rate of the character itself. This alone, is some-
what strange, however, whenb,µandmdo not have the
same values at all loci, the situation is one withsubstan-
tially more complicated behaviour. In particular, and
as noted earlier, the distributions of alleles at different
loci do not equilibrate, although the distribution of the
character, and hence its mean value,Ḡ, does equilibrate
(Waxman and Peck, 2003). The situation is sufficiently
complicated that at the present time, only numerical
results for the value of̄G are available, in this case.

An alternative, to considering multilocus gener-
a the
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quation into a related (simpler) equation. In pa
lar, the distribution of mutant allelic effects had
arameter representing mutational bias transfor
way, at the cost of a modified rate of mutation.
eneral sense, this procedure can be viewed as a
f relating two models with different distributions
utant allelic effects. Let us therefore return toEq.

3), or equivalentlyEq. (5), but now with a distributio
f mutant effectsg(x− y) so it reads

X2ψ(X) − µ

∫
g(X− Y )ψ(Y ) dY = −s α2ψ(X)

(12)
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At this stage, we do not make any assumptions
about g(x− y) apart from its non-negativity and
normalisation to unity, (we do, however, note thatEq.
(5) is a special case ofEq. (12), and follows from the
choiceg(x− y) = f (x− y − b)). We can then relate
the solutionψ(X) of Eq. (12), with the distribution
of mutant effectsg(X− Y ) to the solution with a
different distribution of mutant effects by substituting
ψ(X) = e−cX σ(X)/

∫
e−cX σ(X) dX for some new

functionσ(X) and parameterc. Eliminating the factors
e−cX from Eq. (12), after the substitution has been
carried out, yields

sX2σ(X) − V (c)
∫
h(X− Y )σ(Y ) dY = −s α2σ(X)

(13)

where

V (c) = µ

∫
ecXg(X) dX (14)

h(X− Y ) = ec(X−Y ) g(X− Y )∫
ecXg(X) dX

(15)

We thus see that proceeding in the above manner, we
have gone from an equation describing the equilibrium
behaviour of a model with mutation rateµ and
distribution of mutant effectsg(X− Y ), to a model
with mutation rateV (c), Eq. (14), and distribution of
mutant effectsh(X− Y ), Eq. (15). Of course, for these
calculations to be meaningful, the integral appearing
i e
r
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s ving
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