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Abstract

Experimental data suggests that for some continuously-varying characters under stabilising selection, mutation may cause
a mean change in the value of the character. A one locus, mathematical model of a continuously-varying biological character
with this property of biased mutation is investigated. Via a mathematical transformation, the equilibrium equation describing a
large population of individuals is reduced to the equilibrium equation describing a mutationally unbiased problem. Knowledge
of an unbiased problem is thus sufficient to determine all equilibrium properties of the corresponding biased problem. In the
biased mutation problem, the dependence of the mean equilibrium value of the character, as a function of the mutational bias,
is non-monotonic and remains small, for all levels of mutational bias. The analysis presented in this work sheds new light on
Turelli's House of Cards Approximation.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction distribution of changes it induces. While some muta-
tions tend to increase the value of a character, oth-
When genetic material of living organisms is dupli- ers decrease it and in the recent past it has typically
cated, during the act of reproduction, there is the pos- been assumed that, over the population as a whole,
sibility of copying errors (mutations). Here, we con- the mean mutational change in the character is zero
centrate on mutations that affect characters possessingsee e.gLande, 1976; Bulmer, 1980; Turelli, 1984
the feature of continuous variation, such as the height There is no a priori reason for this assumption of mu-
of an individual(Lynch and Walsh, 1998Mutation tation causing zero mean genotypic change and there
is not solely characterised by its probability of occur- is some experimental data to the contraBgiftiago et
rence; amongst other things, it is characterised by the al., 1992; Lyman et al., 1996; Mackay, 1996; Keightley
and Ohnishi, 1998 Here, we consider a simple (pos-
" Corresponding author. Tel.: +44 1273 678559; sibly the simplest) model of a continpously—varying
fax: +44 1273 678433, character of a sexual population, that incorporates the
E-mail addressd.waxman@sussex.ac.uk (D. Waxman). possibility of mutation causing a mean change in the
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value of the character. We note that a one locus model G = x + y, with the contribution (or effect) of an allele,

may, at the level of alleles controlling the trait, dif-
fer significantly from a mutationally biased multilocus

to the characteror y), having been taken to coincide
with the label of the allele. FollowinGrow and Kimura

model, the latter having been investigated elsewhere (1964) we assume that's andy’s can take continu-

(Waxman and Peck, 2003 particular, in the multi-

ous values in the rangeco to co. Since individuals

locus model, it has been found that there is generally a with different genotypic values, i.e. with differe6ts,

persistent turnover—and hence lack of equilibration—
of alleles at loci affecting the trait—unless genetic con-
straint (Zeng and Cockerham, 1998 incorporated
into the model. No such allelic turnover occurs in a
one locus model and in the present work no form of
genetic constraint is included. By contrast to the be-
haviour at the allelic level, the trait itself rapidly equi-
librates(Waxman and Peck, 2003Jhe present work
provides an explicit example of the behaviour of a trait

generally have a different viabilities, the distribution of
alleles in adults generally differs fros(x)¢(y) and is
given byw(x + y)é(x)¢(y)/w, wherew(G) is propor-
tional to the viability of individuals with character value
G and the presence of = [ w(x + y)¢(x)¢(y) dx dy

(the mean fitness of the population), ensures normali-
sation of the distribution. Here and elsewhere, integrals
with unspecified limits range fromeo to co. We take
w(G) = 1—5(G — Gopt)? Wheres is a positive con-

when mutation causes a mean change in its value. Westant that characterises the intensity of selection. The
also provide a novel calculational scheme that may have quantity Gopt is another constant and we work under

applications elsewhere.

2. Model

Consider a very large, effectively infinite popula-

the assumption that all values 6f of non-negligible
frequency are sufficiently close @yt thatw(G) does

not become negative. The adopted formugiG), in

the absence of other evolutionary processes, tends to
cause the value of the charact@r,to approachits “op-
timal value”, Gopt, over time, and a viability depend-

tion of individuals that possess non-overlapping gener- ing quadratically onG is a mathematically tractable

ations. The effect of genetic drift is negligible, in such

form of stabilising selection with similar properties

a population, and the model can be treated as entirelyto a Gaussian function exp§(G — Gopt)z) (Haldane,

deterministic. Individuals are characterised by a sin-
gle continuously-varying character and the probabil-
ity that individuals survive from birth to reproductive
maturity—their viability—is determined by the value

1954)

Mature adults duplicate their genetic material when
they produce gametes and this entails copying errors—
mutations, which occur to each allele independently.

ofthe character they possess. Individuals are taken to beThe probability of any allele mutating per generation

diploid and reproduce sexually, with two genes within
an individual determining the value of the character.
There are negligible differences in the viability of in-
dividuals of the two sexes of common character value.
This is thus a one locus, sexual model with discrete
generations.

To proceed, let(y) label the allele of maternal (pa-
ternal) origin in an individual. Let the distribution of
maternal origin alleles in one generation, immediately
after formation of zygotes, be denoteddiy). Besides,
possibly, the initial generation, the distribution of alle-
les of paternal origin is identical to that of maternal
origin. Assuming random mating, the distribution of
the alleles in zygotes is given g(x)¢(y). To proceed

is written asu. Given a mutation does occur, we take the
effect of the mutated allele;, to have the distribution
f(x —xp — b) wherexp is the effect of the parental
gene, of which the mutated gene is an imperfect copy,
and the functionf(e) is a Gaussian distribution with
zero mean and a variancemf

/1 x2
f0 = 2mm? eXp<—2m2>

The parameteb characterises the mean change in
x caused by a mutation—the mutational bias. In a
mutated individual, this mean change, relative to the
(unmutated) parental value, if(x — xp) f(x — xp —

@)

further, we assume the value of the character of an or- ) dx = b. If b = 0 we have the most conventional, un-

ganism is additively determined from their two genes.
The genotypic value of the charactér,is thus taken as

constrained model of mutation (see e.gnde, 1976;
Turelli, 1989.
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The gametes produced by an individual contain a yields

copy of only one of the individual’s two alleles. With
equal probability, only one of the two alleles of an in-

dividual is deposited into a gamete and this, and the

perfect or imperfect transmission (mutation) of alle-

SX2(X; by 1) — / FX = ¥ — b)y(Y:b, ) dY

= —sa’Y(X; b, ) (5)

les between parent and gamete is taken into account

by the functionK (x|y, z) = 1/23 ", [(1 — n)3(x —

&) 4+ uf(x — & — b)]. Interms of this function, the dis-
tribution of alleles in gametes in the next generation,
written ¢’(x), is given by

§0) = / K(xly. uly + b)) dy dz.

0= [ wlr-+ 20000 dyc: @
As it stands,Eq. (2 is non-linear and, by virtue
of the integration, non-local. To make progress,
let us henceforth restrict all considerations to
equilibrium, where¢'(x) = ¢(x). With no approx-
imation, Eq. (2 can then be written asu[— w1

() + pwi()]x) = n [ f(x — y = b)wi(y)p(y) dy,
where w1(x) = [ w(x + y)¢(y) dy. Working on the
assumption that and 1— w1 (x) are both small{ 1),

we accurately neglect very small terms of order of the
product of these terms, with the result

[s(x + ¥ — Gop)? — s(x + X — Gop)? + 1] ()

- / Flx—y — b)p(y)dy = 0 3)

where an overbar denotes an average with respectU(b) =

tog(x):x = [x¢(x)dx,(x + x — Gop)? = [(x + x —
Gopt)2¢>(x) dx. Inthe circumstance that= 0 (which is
notgenerally the case of the present wolq, (3 coin-
cides with the equilibrium equation describing a single
haploid locus, with selection coefficiemtx — Gopt)2
and a distribution of mutant effects ¢{x — y — b).

3. Transformation of the distribution

The presence of averaged quantities, such, as —
Eqg. (3, means the problem is still non-linear and non-
local. Changing description i&qg. (3 from x and¢(x)
to a new variableX and its distributiony(X; b, 1), as
defined by
X=x+x— Gopt,

V(X; b, i) = o(x) (4)

wherea? = u/s — [ X?y(X; b, 1) dX. Eq. (5, which
now coincides exactly with the equilibrium equation
describing a single haploid locus, may be interpreted as
an eigenvalue equation wherga? plays the role of an
eigenvalue ang/(X; b, 1) the eigenfunction. Thus, un-
derlying the equilibrium distribution of the biological
problem is, to high accuracy/iaear eigenvalue prob-
lem. The eigenfunction, since itrepresents a probability
density, is subject to the conditiog X ; b, 1) > 0 and
J ¥(X; b, n)dX = 1 and these uniquely determiaé.
Using the form off (e) of Eq. (1), it directly follows
that f(X — ¥ — b) = e 0*/@n?) y pX=1)/m? p(x _
Y). Using this inEq. (5 along with a new function,
o(X), defined by

e DX/ (X, b, )
J e PN y(X; b, w) dX

o(X) = (6)

leads too(X) satisfying
sX%0(X) — U(b) / F(X = Y)o(Y)dY = —saa(X)
(7

e_bz/(zmz)

(8)
We observe that ikq. (7),

(i) bis not present in the argument gfe),
(i) the mutationrateifcq. (5, u, isreplaced by/(b),
(i) o(X) is non-negative and normalised to unity:
o(X) >0, [o(X)dX = 1.

Accordingly, o(X) corresponds with the equilib-
rium distribution in an unbiased = 0) problem where
the mutation rate i#/(b). Thus, a direct comparison of
Egs. (5) and (Yallows us to make the identification
o(X) = ¥(X; 0, U(b)). Using this result irEq. (6 and
solving the resulting equation f@r(X; b, 1) yields

_ @y(x;0,Up))

[ eX/mPy(X;0, U(b)) dX ®)

V(X b, )
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This equation indicates that knowledge of the equi-
librium distribution of a single symmetric (i.é.= 0)
problem,(X; 0, U), for a range of mutation rateg,
that are< u, is sufficient to determine the equilibrium
distribution, ¥ (X; b, ), for all b, of a biased problem.
Eqg. (9 is a statement of thexact relatiorbetween the
solutiony(X; b, u) of Eq. (5 andy(X; 0, U(D)).

Note that (i) sincey/(X;0, U(d)) is non-negative,
it must be a function ofX that has no zeros.
(i) Taking X — 0 in Eq. (7) vyields —U(b)
[ f(N)¥(Y;0,U(b))dY = —sa?y(0;0, U(b)). The
left side of this equation is negative definite and
¥(0; 0, U(b)) is non-negative, so the eigenvalue must
be negative-«? < 0. (iii) The smallness of the allelic
mutation raten, means that typically, there will only
be a single negative eigenvalue.

4. House of cards approximation

We can rewritdeq. (7) for o(X) = ¥(X; 0, U(b)) as
o(X) =[U®)/s] [ f(X —Y)o(¥)dY/(X? + a?) and
an approximation foty(X; 0, U(b)) is given by

up) fx)

Y(X;0,U(b)) ~ Ty X212

(10)
where«? is determined from the requirement of nor-
malisation, [ ¥(X; 0, U(b)) dX = 1.

The above approximation is valid whenis small
compared with the “range” over whicfi(e) is appre-
ciable, which is of ordem, i.e. whena <« m. When
this appliesp >~ 7U(b) f(0)/s, hence the approxima-
tion is applicable whemU(b) £(0)/s <« m. An alter-
native way of viewing this approximation is to note that
it corresponds to the range of mutatioms being large
compared with the range @f(X; 0, U(b)), which is of
ordera. When this occurs there is little relation be-

tween the pre and post-mutated state of an individual
and this is close to the exact behaviour of the House wherei =

of Cardsmodelof mutation(Kingman, 1978) Thus,
Eqg. (10 is called the House of Cards Approximation
(Turelli, 1984)

Itis of interest to know the properties of the quantity
a? = o®(b, ), which is proportional to the eigenvalue
of Eq. (9, as afunction of the bias parameteiyWe can
determine a property of from the observation that the
same eigenvalue;sa?, appears in the original eigen-
value equationkq. (5, and the transformed equation,
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Eq. (9. An eigenvalue of an operator can only depend
on parameters present in the operator, thus on compar-
ison ofEgs. (5) and (Y, it follows that we have the ex-
act relatiorx(b, i) = (0, U(b)) where—sa?(0, U) is

the negative eigenvalue of an unbiased problem, with a
mutation ratd/. The approximatio >~ zU(b) f(0)/s
depends o andb only in the combinatiorU(b) =

w exp[—b?/(2m?)] and this form is compatible with
the general relatioa(b, u) = (0, U(b)).

We have noted above that the smallnessaof
provides the justification of the House of Cards
Approximation. We have thata(b, u) >~ wuexp
[—b%/(2m?)] f(0)/s, hence for b #0, a(b, ) <
a(0, u). As a consequence, the House of Cards Ap-
proximation, as applied t&g. (7) and resulting irEq.
(10), applies with higher accuracy in a biased mutation
problem than it does in its application in a standard
unbiased problem.

4.1. Mean character value

The equilibrium mean value of the characteGis=
J(x 4+ y)p(x)p(y)dxdy = 2 [ x¢p(x) dx = 2x. Using
Eq. (9 we have [ Xy(X;b, u)dX = 2x — Gopt
= G — Gopt and usingeq. (9 and the approximation
of Eq (10 vyields G — Gopt~ (U(b)/s) [ dX X
ePX/m? £(X)/(X? + ?) neglecting the denominator in
Eq. (9), which is very close to unity. We can rewrite the
integral as/ dX X sinhpX/m?) f(X)/(X? + «?) and
in this form, it can be verified that neglectingsince it
is « m, is an accurate approximation. Following from

this, we obtain
—bz/(zmz) /

\/;’“‘ —b2/<2m2> ert(—2-)
2 sm m

/=1 and erfg) denotes the error function
(Abramowitz and Stegun, 1965)

The result above foilG — Gopt is an odd, non-
monotonic function ob: for [b/m| < 1,G — Gopt =~
wb/(sm?) i.e. proportional tab while for |b/m| > 1,

G — Gopt = 1+/(sb) i.e. proportional td~ 1 seeFig. 1

The non-monotonic behaviour @ — Gopt, as a
function of b, indicates that although mutations may
cause a non-zero mean change in the value of the char-
acter, there is only aery limitedamount of change

G Gopt 2/2 dv
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Fig. 1. The deviation of the equilibrium mean genotypic vaide,
from its optimal valueG opt, NnamelyG — Gopt, is plotted as a func-
tion of mutational biag). Eq. (1) was used to produce the figure and
the parameter values adopted were the “typical” vajues 105,

m = 0.2, ands = 0.025 of a sexual populatiofLynch and Walsh,
1998)

they can bring about: Ma¢G — Gopy) =~ 0.77u/(sm),
with the maximum occurring &t ~ 1.3m. This non-
monotonic behaviour arises because of the detailed in-

terplay between mutation and selection. In the absence

of selection, the effect of any > 0 would be to sys-
tematically increase the character value over time. Se-
lection results in a decreased survival probability of in-
dividuals with large character-values and the combined
outcome of mutation and selection is a non-monotonic
equilibrium behaviour. It may be verified, using a simi-
lar approach to that used in the determinatioG ofhat
when the House of Cards Approximation is applicable,
there is negligible change in the genetic variance from
its b = 0 value.

In the case of a single haploid locus, with mean al-
lelic effectx, it is possible to establish results that indi-
cate that the deviation affrom the optimal valug,x —
xoptl, vanishes faster thayiiz, asu — 0 (see Eq. (6.10)
of Burger, 2000. We have already noted, in Section 2,
thatEq. (3 is not identical to the equation of a single
haploid locus thus this limiting result does not fulfil
the conditions for it to be applicable in this case. How-
ever, inspection oEq. (1] indicates thalG — Goptl is
proportional tou and consequently does vanish faster
than /i, asu — 0 (much faster, indeed). We note
that while such limiting results, when applicable, do put
some constraints on the siz€ 0f— xqp, they are fairly
blunt instruments, in that they are unable to capture

Systems 78 (2004) 93-98 97

or predict the existence of the type of non-monotonic
behaviour we have seen exhibited|@ — Gopt| and
which is also manifested in one locus haploid models.

5. Discussion

As formulated, the model presented applies only to
organisms with a character controlled by a single ge-
netic locus. The calculation may be directly extended
to the case of a character controlled by more than one
locus, and hence more than two genes, if, and only if,
the mutational parametets 1, andm have no varia-
tion acrossloci. Inthis case, under the approximation of
linkage equilibrium(Bulmer, 1989; Turelli and Barton,
1990) the value ofG — Gopt is identical to the result
of Eq. (13). Thus, in this multilocus case, the deviation
of G from Gopt is proportional to (and limited by) the
allelic mutation rate, and not, as one might guess, the
mutation rate of the character itself. This alone, is some-
what strange, however, whénu andm do not have the
same values at all loci, the situation is one veitibstan-
tially more complicated behaviour. In particular, and
as noted earlier, the distributions of alleles at different
loci do not equilibrate, although the distribution of the
character, and hence its mean valiedoes equilibrate
(Waxman and Peck, 2003)he situation is sufficiently
complicated that at the present time, only numerical
results for the value of; are available, in this case.

An alternative, to considering multilocus gener-
alisations of the present work, is to consider if the
mathematical results presented can be looked at from
a more general viewpoint. The essence of the present
work concerned a mathematical transformation of the
equation that determined the equilibrium distribution
of allelic effects. The transformation changed the
equation into a related (simpler) equation. In partic-
ular, the distribution of mutant allelic effects had a
parameter representing mutational bias transformed
away, at the cost of a modified rate of mutation. In a
general sense, this procedure can be viewed as a way
of relating two models with different distributions of
mutant allelic effects. Let us therefore returnHEg.

(3), or equivalentlyeq. (5, but now with a distribution
of mutant effectg(x — y) so it reads

SX2(X) — 1 / $(X — VYY) dY = —sa?y(X)
(12)
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At this stage, we do not make any assumptions
about g(x — y) apart from its non-negativity and
normalisation to unity, (we do, however, note tEat.
(5) is a special case d&qg. (12, and follows from the
choiceg(x — y) = f(x — y — b)). We can then relate
the solutiony(X) of Eq. (12, with the distribution
of mutant effectsg(X — Y) to the solution with a
different distribution of mutant effects by substituting
Y(X) = e Xo(X)/ [e X o(X)dX for some new
functiono(X) and parameter. Eliminating the factors
e~X from Eq. (19, after the substitution has been
carried out, yields

sX%o(X) — V(c) / h(X — Y)o(Y)dY = —sa?o(X)

(13)
where
Vi) =pu / eXg(X)dx (14)
X —Y) = w (15)

[eXg(X)dX

We thus see that proceeding in the above manner, we

have gone from an equation describing the equilibrium
behaviour of a model with mutation rate and
distribution of mutant effectg(X — Y), to a model
with mutation rateV(c), Eq. (14, and distribution of
mutant effect&(X — Y), Eq. (19. Of course, for these
calculations to be meaningful, the integral appearing
in Egs. (14) and (Ipmust exist and this puts some
restriction on the asymptotic form gfX).

From the above considerations, it follows that
some models of the type considered here—involving
mutation and selection of a continuous character,
but with apparently different distributions of mutant
effects, are, via a transformation, convertible into
each other. The case of a Gaussian distribution of
mutant effects—the main example of this work— was
a particular example of this, where a transformation
connected biased and unbiased problems.
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