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Abstract

We consider a large population of asexual organisms characterised by a number of quantitative traits that are subject to stabilising

selection. Mutation is taken to act pleiotropically, with every mutation generally changing all of the traits under selection. We focus on

the equilibrium distribution of the population, where mutation and selection are in balance. It has been previously established that the

equilibrium distribution of genotypic effects may be anomalous, as it may contain a singular spike—a Dirac delta function—

corresponding to a non-zero proportion of the population having exactly optimal genotypic values. In the present work, we present exact

results for the case where three traits are under selection. These results give the equilibrium genetic variance of the population, and the

proportion of the population that have the optimal genotype. This is achieved for two different spherically symmetric distributions of

mutant effects. Additionally, a simple and robust numerical approach is also presented that allows the treatment of some other mutation

distributions, where there are an arbitrary number of selected traits.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The way that quantitative genetic variation can be
maintained by the balance between recurrent mutation and
stabilising selection has received a great deal of attention in
the population genetics literature. (For a review, see e.g.
Bulmer, 1989; Bürger, 1998, and for the most recent work on
sexual populations involving pleiotropy, see Zhang et al.,
2004.) An implicit assumption underlying the majority of
work on this subject is that the equilibrium distribution of
genotypic effects is smooth and continuous. However, recent
theoretical studies of models with mutations that affect
multiple traits (i.e. mutations with pleiotropic effects) have
come to different conclusions. In particular, Waxman and
Peck (1998, 2000) performed calculations using the con-
tinuum-of-alleles model of mutation introduced by Crow
and Kimura (1964). They considered an asexual population
where no form of recombination can occur. In a large
(effectively infinite) population, where genetic drift can be
e front matter r 2006 Elsevier Inc. All rights reserved.
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neglected, the distribution of genotypic effects is not always
smooth or non-singular. As long as a mutation can
simultaneously affect three or more traits, a range of
parameter values may exist where the equilibrium distribu-
tion of genotypic effects is singular. To be specific, the
distribution may contain a sharp ‘‘spike’’, a Dirac delta
function (Dirac, 1958), that is located at the genotypic trait
values that maximise fitness—the ‘‘optimal’’ or ‘‘perfect’’
genotype. Fig. 1 illustrates how the distribution of genotypic
effects of a single trait, say trait 1, can differ in the form it
takes, depending on the nature of mutation.
This singular behaviour corresponds to a finite propor-

tion of the population having just one particular geno-
type—the optimal genotype—out of the infinite number of
genotypes that are possible under a continuum-of-alleles
model. The singular behaviour can also be viewed as there
being a non-negligible probability that a randomly chosen
individual will have the optimal genotype. When a spike is
present in the equilibrium genotype distribution, the
optimal genotype is unique, in that it occurs in the
population at an appreciable frequency, while the fre-
quency of any other particular genotype is negligible.
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Fig. 1. The equilibrium distribution of genotypic effects for a single trait

(trait 1) is plotted as a function of the genotypic effect of the trait. The

population is large (effectively infinite). The broken curve is the

distribution that results when mutation acts non-pleiotropically (i.e.

where only a single trait is changed, when a mutation occurs). The solid

curve is an example of the distribution that can result when mutation acts

pleiotropically, with three traits simultaneously changed by each muta-

tion. This latter distribution is singular in that it contains a Dirac delta

function that may contain an appreciable proportion of the area of the

distribution. The delta function is represented by the vertical line. This line

is infinite in height, and its width should be infinitesimal; however, we have

broadened it to allow visualisation. Despite the very different appearance

of the two distributions, their variances may be very similar in value. For

the distribution arising from pleiotropic mutations, the variance is u=s (see

Section 4). For the non-pleiotropic case, the variance approximately

coincides with this value (under the House of Cards approximation—see

the end of Section 3).
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Such singular behaviour is surprising, since it can arise
from seemingly innocuous distributions of mutant effects,
that is, distributions that have a completely continuous
range of possible mutations, and that allow infinitesimally
small changes as well as finite changes (singular equilibrium
behaviour can, of course, arise from singular distributions
of mutant effects, Kingman, 1978; Bürger and Bomze,
1996). The origin of the spike has been discussed elsewhere
(Waxman and Peck, 1998, 2000) and arises from a
suppression of mutations of non-optimal genotypes to
genotypes that are near optimal. It has a robust,
geometrical origin. In the Discussion, we give the rationale
for a spike-like behaviour being likely in the case of more
elaborate models, where genotypic effects are discrete.

In the present work we investigate, in some detail, the
singular behaviour that can arise in pleiotropic models.
When there are O traits, and when OX3, singular behaviour
in the distribution of genotypic effects is, in principle,
possible (Waxman and Peck, 1998, 2000). We write the
genotypic effects on the O traits (also termed genotypic
values) in the form g ¼ ðg1; g2; . . . ; gOÞ. The equilibrium
distribution of genotypic values is written as FðgÞ and has
the interpretation that the probability of a randomly chosen
individual having trait values in the infinitesimal region of
‘‘volume’’ dOg � dg1 dg2 . . . dgO centred at g is FðgÞ dOg.
When we use the phrase ‘‘singular’’ we do not mean
distributions that simply diverge for some g, for example

FðgÞ / kgk�2 where kgk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
1 þ g2

2 þ � � � þ g2
O

q
. Rather, by

singular, we mean distributions that contain a Dirac delta
function, dðgÞ, which may be thought of as an infinitely
high, infinitely narrow spike, whose integral, over a range of
g that contains the point g ¼ 0 � ð0; 0; . . . ; 0Þ, is unity. If a
term such as AdðgÞ (where A is a constant) is present in FðgÞ
then a proportion A of the population will have traits with
values given by g ¼ 0 and, for the individuals constituting
this proportion of the population, there will be no variation
in their genotypic values around g ¼ 0. The remainder of
the population do not lie ‘‘under the spike’’ and make up a
proportion 1� A of the population, with any single
genotype, in this part of the population, being present at
negligible frequency. There is variation in genotypic values
of the traits associated with this non-optimal proportion of
the population and even if A is close to unity, an
appreciable variance in trait values may arise from non-
optimal individuals. For example (and as we shall see), the
variance of the marginal distribution of trait g1 of a singular
distribution containing a spike may, for small mutation
rates, have a variance very close to the variance of a
corresponding problem where mutations do not act
pleiotropically (the corresponding distributions are plotted
in Fig. 1). This occurs, even though in the non-pleiotropic
problem, the equilibrium distribution of g1 is everywhere
finite, continuous and non-singular.
The proportion of the population lying under the spike,

A, has not, so far, been analysed analytically over an
appreciable range of mutation rates (or other parameters).
It has been approximated only when close to A ¼ 1, even
though A can range from 0 to 1. Similarly, the analysis of
the genetic variance on any trait, written as V G;1, has also
only received a limited analysis. There are a number of
questions that remain unanswered or aspects of the
problem that are uncertain because of the limited analysis.
The present work aims to remedy this and illustrate key
aspects of the problem by restricting discussion to the
smallest number traits where a spike is possible (O ¼ 3) and
using particular distributions of mutant effects that lead to
exact results.
Thus we can ask:
(i)
 How accurate is the approximation that has been
previously used in the small mutation rate regime—the
House of Cards approximation—for the proportion of
the population lying under the spike, A, and the
genetic variance on any trait, VG;1? (See later for more
details of this approximation).
(ii)
 Increasing the mutation rate from a starting point of
zero, there generally exists a critical mutation rate,
beyond which A vanishes and no spike is present in the
distribution. Do different distributions of mutant
effects lead to the same critical mutation rate, or
different ones?
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(iii)
 In what way does A vanish, when the mutation rate
approaches its critical value?
(iv)
 How does V G;1 behave as a function of the mutation
rate, when there is a spike in FðgÞ?
(v)
 Are there any choices of the distribution of mutant
effects that are not biologically implausible, where
exact expressions can be derived for the proportion, A,
of the population under the spike and the genetic
variance, VG;1?
(vi)
 In situations where the equilibrium distribution of
genotypic effects, FðgÞ, is singular, are there robust
numerical approaches available for estimating the
value of A?
It is clear that if we can answer questions (v) and (vi) then
the answers to the previous questions automatically follow.
Before, however, we can address these questions we need to
specify the model in more detail.

2. Model

Consider an effectively infinite population of asexual
organisms, which do not undergo any form of recombina-
tion, and where individuals are subject to selection on O
different phenotypic traits. We assume that the phenotypic
value of an individual on trait i is additively determined by
the genotypic value of that trait, say gi, and an environ-
mental noise component, ei. The distribution of environ-
mental effects is taken as independent of the distribution of
genotypic effects, has mean zero, variance V e for all ei, and
has ei and ei statistically independent for iaj.

We write possible genotypic effects as g ¼ ðg1; g2; . . . ; gOÞ

and each gi is assumed to take continuous values ranging
from �1 to 1. Following Kimura (1965), we assume
generations are overlapping and hence time is continuous.
We restrict our analysis to a description of equilibrium (see
below). However, the conclusions we arrive at apply, as an
approximation, to populations with discrete generations,
when subject to weak selection.

Births are, by an appropriate scaling of time, taken to
occur at a rate of one per unit time and mutation is taken
to occur at a rate (i.e. probability) of u per replication. We
restrict all considerations of this work to spherically
symmetric distributions of mutant effects. To see what
this entails, consider a mutant offspring arising from
an individual with genotypic effects h ¼ ðh1; h2; . . . ; hOÞ.
Spherical symmetry means the probability the offspring
has genotypic effects lying in a region of infinitesimal
‘‘volume’’ dOg ¼ dg1 dg2 . . . dgO, centred on g, depends
only on the magnitude of the mutational change, kg� hk.
This probability is taken to be f ðkg� hkÞ dOg, with f ðkgkÞ

termed the distribution of mutant effects. The variance of
mutant effects on any single trait is taken to have a value of
m2 which is independent of O.

The Malthusian fitness of individuals with genotypic
values g ¼ ðg1; g2; . . . ; gOÞ arises from an average over
environmental effects of Malthusian fitness as a function of
phenotypic values, and is taken to have the form
1� skgk2=O. Here s is a positive parameter whose value
is a measure of the intensity of selection on genotypic
values. This form of fitness is of a stabilising type, with an
optimal genotypic value of g ¼ 0 � ð0; 0; . . . ; 0Þ, since any
deviation of g from 0 leads to a decreased value of fitness.
The factor 1=O, which is present in the Malthusian fitness,
results in a mean selection coefficient of sm2 against the
mutant offspring of parents with maximal fitness. Thus
taking s to be independent of O ensures that s has an
equivalent interpretation for different O. We note that the
form of Malthusian fitness adopted may, in discrete time
models, be considered closely equivalent to noroptimal
selection (Haldane, 1954).
Following Kimura (1965), Bulmer (1989) or via the weak

selection/small mutation approximation of a discrete time
model, we can derive the equation describing the dynamics
of the distribution of genotypic effects. At equilibrium this
equation reduces to

s

O
kgk2FðgÞ � u

Z
f ðkg� hkÞFðhÞ dOh ¼ �lFðgÞ, (1)

where l is a constant that must be chosen so that FðgÞ is
non-negative and normalised to unity:

R
FðgÞ dOg ¼ 1.

Both here and elsewhere, integrals with unspecified limits
are taken to cover the full, �1 to 1, range of all
integration variables.

3. Approximate results for O ¼ 3

In order to set the context for the exact results we obtain,
it is necessary to discuss approximate results. We note that
the equilibrium variance of a sexual model with pleiotropy
was analysed by Turelli (1985) using the House of Cards
approximation. This approximation applies when mutant
effects are, to a first approximation, unrelated to the
corresponding parental effects (Turelli, 1984). This is very
similar to the exact behaviour of the House of Cards model

of mutation (Kingman, 1978). Our focus in this work is
on the singular equilibrium genotypic distributions that
can arise as a result of pleiotropy, when analysis is
restricted to asexual populations. Like previous studies of
this phenomenon, we shall use the House of Cards
approximation to derive expressions for the proportion A

of the population under the spike and the genetic variance,
VG;1. As we shall see (by comparison with the exact results
developed in the next section), these expressions are
adequate for small values of the mutation rate, u, and
they are qualitatively informative, even for larger values
of u.
Henceforth, we will treat only the case of O ¼ 3 (except

in the Appendix, where some numerical results are
generalised to larger values of O).
The House of Cards approximation in Eq. (1) is appli-

cable if the range of g where FðgÞ is appreciable is
much smaller than the range of g where f ðkgkÞ varies
appreciably. It simply entails replacing

R
f ðkg� hkÞFðhÞ d3h
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by
R

f ðkgkÞFðhÞ d3h � f ðkgkÞ. This leads to

s

3
kgk2FHCðgÞ � uf ðkgkÞ ¼ �lFHCðgÞ (2)

and the subtlety of the problem depends on the size of u. If
u is sufficiently large that l40 then Eq. (2) has the non-
singular solution FHCðgÞ ¼ ð3u=sÞf ðkgkÞ=ðkgk2 þ 3l=sÞ and
l is determined from normalisation:

R
FHCðgÞ d

3g ¼ 1. We
note that the value of u required for l40 may be too large
for good accuracy of the approximation.

The ability to normalise FHCðgÞ should not be taken for
granted, so let us consider the largest value that

R
FHCðgÞ

d3g can have, prior to fixing l from the requirement of
normalisation. We note that when l takes its smallest
possible value, which is l ¼ 0 (see the Appendix for the
reason for this), the integral

R
FHCðgÞ d

3g takes its largest
value, hence

R
FHCðgÞ d

3gpð3u=sÞ
R

f ðkgkÞ=kgk2 d3g. When
the quantity on the right side of this inequality is o1 the
House of Cards solution, FHCðgÞ, given above, cannot be
normalised to unity and it no longer is a valid probability
density. The resolution of this impasse is that when l ¼ 0,
it is no longer legitimate to simply solve Eq. (2) by (i)
collecting all terms in FHC together onto the left hand side,
and then (ii) solving for FHC by dividing by ðs=3Þkgk2 þ l.
When l ¼ 0 the quantity (s=3Þkgk2 þ l vanishes at g ¼ 0

and this allows the presence of a Dirac delta function in the
solution (Dirac, 1958) and leads to a singular House of
Cards solution:

FHCðgÞ ¼ AHCdðgÞ þ
3u

s

f ðkgkÞ

kgk2
. (3)

Here AHC is a constant equal to the House of Cards
approximation for the proportion of the population under
the spike, A; it is determined from the requirement of
normalisation,

R
FHCðgÞ d

3g ¼ 1, and given by

AHC ¼ 1�
3u

s

Z
f ðkgkÞ

kgk2
d3g � 1�

u

uc;HC
, (4)

where

uc;HC ¼
s

3
R

f ðkgkÞ=kgk2 d3g
. (5)

The result of Eq. (4) predicts that if
R

f ðkgkÞ=kgk2 d3go1
then A ¼ 1 when u ¼ 0 and that for sufficiently small u, A

decreases approximately linearly with u. Given a form of
f ðkgkÞ it is possible to estimate the region where the
approximation is accurate by determining where the variance
of FHCðgÞ is very small compared with the variance of
f ðkgkÞ.

A necessary condition for l ¼ 0, under the House of
Cards approximation, is upuc;HC. Since the validity of the
House of Cards approximation requires that the variance
of FHCðgÞ is small, which occurs when u is small, it is not
obviously reasonable to give great significance to the
relatively large value of u where AHC actually vanishes,
namely at u ¼ uc;HC.

Lastly, the House of Cards approximation of the genetic
variance, in the parameter region where l ¼ 0 and a spike is
possible, is V G;1;HC ¼
R

g2
1FHCðgÞ d

3g �
R
kgk2FHCðgÞ d

3g=3
(the last result for VG;1;HC following from spherical
symmetry of FHCðgÞ). It follows, from multiplying Eq. (3)
by kgk2 and using kgk2dðgÞ � 0, that

VG;1;HC ¼ u=s. (6)

This is also the result we would obtain for the genetic
variance under the House of Cards approximation of a
non-pleiotropic problem, where the mutation distribution
f ðkg� hkÞ is replaced by 1

3

P3
j¼1 f 1ðgj � hjÞ �

Q3
k¼1ðkajÞ

dðgk � hkÞ.
Let us now compare the above approximate results with

some exact results.
4. Exact results for O ¼ 3

We present exact solutions of Eq. (1) when O ¼ 3,
for two particular choices of the distribution of mutant
effects, f ðkgkÞ. Calculational details are relegated to the
Appendix. From the exact solutions we obtain exact
expressions for (i) the proportion of the population lying
under the spike, A (i.e. the proportion of the population
having exactly the optimal genotypic value) and (ii) the
genetic variance, V G;1.
As a suitable reference distribution, we use an isotropic

Gaussian distribution, which we denote as f 0ðkgkÞ

f 0ðkgkÞ ¼
1

2pm2

� �3=2

exp �
kgk2

2m2

� �
. (7)

The two forms of the distribution f ðkgkÞ, for which we
can solve Eq. (1), are written as f 1ðkgkÞ and f 2ðkgkÞ and
given by

f 1ðkgkÞ ¼ �
1

2pm2

1

kgk

q
qkgk

kgk

sinhðpkgk=ð
ffiffiffi
2
p

mÞÞ
, (8)

f 2ðkgkÞ ¼
1

pm3
exp �

2kgk

m

� �
. (9)

Parameters in the two distributions have been chosen so
that the variance of any single trait is m2, i.e. identical to
the variance of any single trait of the Gaussian distribution,
Eq. (7).
We note that both f 1ðkgkÞ and f 2ðkgkÞ are decreasing

functions of kgk, with a finite maximum value that is
proportional to m�3. At large kgk both distributions fall off
essentially exponentially with kgk. This is a slower decrease
than that of the Gaussian distribution, Eq. (7), but it does
not appear to have any significant implications.
In order to compare the distributions f 0, f 1 and f 2 we

have produced two different plots of them. In Fig. 2a, we
plot the distributions as functions of kgk while in Fig. 2b
we plot 4pkgk2f ðkgkÞ as a function of kgk. The quantity
4pkgk2f ðkgkÞ dkgk is the probability that the magnitude of
a mutational change, g, lies in the infinitesimal range kgk to
kgk þ dkgk.
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Fig. 2. (a) The distributions of mutant effects, f 0ðkgkÞ, f 1ðkgkÞ and

f 2ðkgkÞ of Eqs. (7)–(9), are plotted as a function of kgk. All distributions

are normalised to unity:
R

f ðkgkÞ d3g ¼ 1, and parameters in the

distributions are chosen so that the variance of any single trait is m2:R
g2i f ðkgkÞ d3g ¼ m2. (b) The distribution of mutant effects f ðkgkÞ has a

distribution of magnitudes of mutational changes of 4pkgk2f ðkgkÞ and this

is plotted as a function of kgk. This distribution appears in any spherically

symmetric integrals involving f ðkgkÞ and all three distributions have a

maximum close to kgk ¼ m, where m2 is the variance on any single trait.

0 2

0

1

3u / (sm2)

A

f2

f1

f0

Fig. 3. The proportion of the population ‘‘under the spike,’’ A, is plotted

as a function of mutation rate u. The three cases plotted correspond to the

distributions of mutant effects of Eqs. (7)–(9). The curve arising from the

Gaussian distribution f 0ðkgkÞ of Eq. (7) was calculated numerically, using

the method of Section 5. The curves arising from the other two

distributions were calculated from Eqs. (10) and (12) and are indis-

tinguishable from numerically calculated curves.
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We write the equilibrium proportion of the population
lying under the spike for distribution f i as Aðf iÞ and the
corresponding genetic variance as VG;1ðf iÞ. With Gð�Þ
denoting Euler’s Gamma function (Abramowitz and Ste-
gun, 1970) we find that for the distribution f 1

Aðf 1Þ ¼

ffiffiffi
p
p

G
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8u=uc;1

p
4

 !
G

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8u=uc;1

p
4

 ! ; u

0; u

8>>>><
>>>>:

(10)

where

uc;1 ¼ sm2=3 (11)

and for upuc;1, V G;1ðf 1Þ ¼ u=s.
For the distribution f 2 we find

Aðf 2Þ ¼

sinððp=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u=uc;2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3u=uc;2

p ; uouc;2;

0; uXuc;2;

8><
>: (12)

where

uc;2 ¼ sm2=4 (13)

and for upuc;2, VG;1ðf 2Þ ¼ u=s.
The quantities uc;1 and uc;2 are the critical mutation rates,

beyond which there is no spike in the equilibrium
distribution. They do not coincide with the House of
Cards approximation given in Eq. (5), but are significantly
larger: uc;1=uc;1;HC ¼ 2 ln 2 ’ 1:4 and uc;2=uc;2;HC ¼ 1:5.
In Fig. 3 we plot Aðf 1Þ and Aðf 2Þ as a function of

mutation rate u and, for comparison, plot the numerically
determined result for a Gaussian distribution, Aðf 0Þ.
In the regime where a spike exists, the genetic variances

VG;1ðf iÞ for i ¼ 0, 1 and 2 are all exactly equal to the
leading result of the House of Cards approximation, u=s.
This result applies, in fact, for any spherically distribution
of mutant effects, for any value of O; when a spike exists.
It may be directly verified from Eqs. (10) and (12) that by

assuming u=ðsm2Þ51 and keeping terms only up to linear
order in u, the coefficients A1 and A2 agree with the House
of Cards approximation, Eq. (4).
For mutation rates in the vicinity of the exact critical

mutation rates (i.e. u ’ uc;1 or uc;2) we find A1 ’ ð
2
3
Þð1�

u=uc;1Þ and A2 ’ ð3p=16Þð1� u=uc;2Þ. Hence although A1

and A2 vanish at uc;1 or uc;2, they do so with different values
of the slope, dA=duju¼uc

, and with a different slope to the
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House of Cards approximation for A, when extrapolated to
large u.
5. Numerical method

To complement the exact analytical results of the
previous section, we present here a very simple and robust
numerical approach to calculate the proportion of indivi-
duals under the spike, A, when the distribution of mutant
effects is, as previously assumed, spherically symmetric and
there are three traits. Details of the rationale behind this
approach are given in the Appendix, as well as a general-
isation to an arbitrary number of traits.

The numerical approach requires knowledge of the
Fourier transform of the distribution of mutant effects.
The Fourier transform is denoted by F ðkqkÞ and defined by
F ðkqkÞ ¼

R
e�iq�gf ðkgkÞ d3g, where q � g denotes the scalar

product of q and g.
Given F ðkqkÞ, we numerically solve the differential

equation ðs=3Þ d2wðrÞ=dr2 þ uF ðrÞwðrÞ ¼ 0 for wðrÞ, subject
to the initial conditions wð0Þ ¼ 0, dwðrÞ=dr

��
r¼0
¼ 1. The

value of dwðrÞ=dr, when r is large and positive, is a
significant quantity. When limr!1 dwðrÞ=dr is positive it
coincides with the proportion of the population under the
spike, A, and when limr!1 dwðrÞ=dr is not positive, A is
zero. Given the high accuracy of numerical differential
equation solvers and the property of wðrÞ that it asympto-
tically changes linearly with r, it follows that dwðrÞ=dr, for
large but finite r, robustly coincides with A, when the result
is positive.

In Fig. 4, we plot a numerically determined form of
wðrÞ following from the distribution of mutant effects, f 1,
of Eq. (8).
0 20
0

10

r

χ(
r)

u = 0.5uc,1

Fig. 4. The function wðrÞ of Section 5 is plotted as a function of r. The

coefficient of r in the linearly changing, large r, region coincides with the

proportion of the population ‘‘under the spike,’’ A. The case plotted is for

the distribution f 1ðkgkÞ of Eq. (8), for u ¼ 0:5sm2=3 � 0:5uc;1. Comparing

the analytical result of Eq. (10) with the numerically determined coefficient

of r (using Matlab’s differential equation solver with default settings) leads

to a numerical error of order 10�3%.
6. Discussion

The present work has considered two distributions of
mutant effects that appear qualitatively similar to an
isotropic Gaussian distribution; they are both spherically
symmetric (depend only on the magnitude of mutational
changes), are unimodal and have a finite maximum value.
As we have shown in an exact analysis, they can both lead
to a spike in the equilibrium distribution of genotypic
effects. They constitute explicit examples of mutational
distributions where the distribution of genotypic effects can
have a very different shape from that of a smooth
distribution. Despite this difference in shape, we have also
shown that when the distribution of genotypic effects is
most different from a smooth distribution, by having a
spike present, the genetic variance is little changed from
that of the House of Cards approximation, and has the
exact value u=s.
Given that in reality there are only countably many

sequence variants that affect the expression of any locus,
the spike in the distribution of genotypic effects may be
objected to, as being biologically trivial. In a sufficiently
large population with discrete genotypic effects, the
optimal sequence will always make up a finite fraction of
the population at equilibrium, and hence has a finite
probability of occurring in a randomly chosen individual,
irrespective of details such as the number of traits. So how
is this different, in principle, from the presence of the spike
described throughout this work, which also represents the
optimal sequence being present with finite probability in
the population? The answer to this question requires us to
recognise that there are two possible alternatives for the
equilibrium distribution of discrete genotypes (Waxman,
2003). Namely there are equilibrium distributions where
either
(i)
 sequences with fitness close to that of the fittest
sequence are at a comparable frequency to that of the
most fit sequence
or
(ii)
 sequences with fitness close to that of the fittest
sequence are at a very significantly reduced frequency,
compared with that of the most fit sequence.
If alternative (i) holds then a conventional sort of
distribution arises, which could reasonably be approxi-
mated as a continuous function of genotypic values of the
type that is standard in quantitative genetics. If, however,
alternative (ii) holds then a single genotype (the one
conferring highest fitness) has a significantly higher
representation in the population than would be naively
expected, and a non-conventional sort of distribution
describes the population. If this distribution is approxi-
mated as a function of continuous genotypic values then it
will be of the singular type introduced in the earlier work of
Waxman and Peck (1998, 2000). It is alternative (ii) that
this paper has aimed to describe and, when applicable, the
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Fig. 5. For the case O ¼ 3, the conditional expectation of squared

mutational effects, E½g2
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0, is plotted as a function of lnðg2
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0Þ. The

dashed line represents the conditional expectation for the mutational

distribution of Wingreen et al. (2003), which is proportional to

kgk�2 expð�kgk2=ð2m2
0ÞÞ. The solid line represents the conditional

expectation for the exponential distribution of mutant effects, f 2ðkgkÞ,

of Eq. (9). The parameter m appearing in f 2ðkgkÞ has been chosen to equal

m0=
ffiffiffi
3
p

so that both distributions used for the plot have the same value of

the standard deviation of mutant effects on any single trait.
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spike in the distribution of genotypic effects may be viewed
as the way the continuum-of-alleles model of mutation
correctly reproduces the anomalously high frequency of the
optimal genotype.

From the work of Waxman (2003) it follows that
alternative (ii) is likely to apply when the difference in
values of adjacent discrete genotypic effects on any trait is
very small compared with the standard deviation of mutant
effects on that trait. As far as pleiotropic mutations are
concerned, this is an important hidden assumption that
needs to be satisfied if continuum-of-alleles models can be
used in place of discrete effect models.

We note that there has been theoretical work questioning
the existence of the spike in the equilibrium distribution of
mutant effects (Wingreen et al., 2003). The authors of this
work considered a form for the distribution of mutant
effects that differed from the Gaussian distribution
originally adopted by Waxman and Peck (1998, 2000).
For O ¼ 3 the distribution of Wingreen et al. (2003) is (in
the notation of the present work) proportional to
kgk�2 expð�kgk2=ð2m2

0ÞÞ, where m0 is a constant. One of
the properties of this distribution is that it possesses a form
of correlations not present in a Gaussian distribution.
These are not the standard sort of correlations between
mutational effects on different traits—which are included
in earlier work (Turelli, 1985) and which do not prevent a
spike in the distribution of genotypic effects. Rather, they
are correlations between the magnitudes of mutational
changes on different traits and which could be charac-
terised by the covariance Covðg2

i ; g
2
j Þ ¼ E½ðg2

i � E½g2
i �Þ

ðg2
j � E½g2

j �Þ�, where E½. . .� denotes an expectation taken
with respect to the distribution of mutant effects. Wingreen
et al. (2003) chose, however, to characterise the correla-
tions between the magnitudes of mutational changes in a
different way. They used a conditional expectation: the
expected value of the squared mutational change of trait i

ðia1Þ, g2
i , when the squared mutational change of trait 1

(i.e. g2
1) has a given value. We write this as E½g2

i jg
2
1�. Then

with k ¼ g2
1=ð2m2

0Þ and for O ¼ 3, Wingreen et al. found a
result equivalent to E½g2

i jg
2
1� ¼ m2

0ððexpð�kÞ=
R1
k expð�uÞ=

u duÞ � kÞ and these authors plotted E½g2
i jg

2
1�=m2

0 against
lnðg2

1=m2
0Þ in their Figure 2. We have reproduced this curve

as a dashed curve in Fig. 5.
The dashed curve is monotonically increasing, indicating

a positive correlation in the magnitude of mutations for
different selected traits. The corresponding result for the
Gaussian distribution, Eq. (7), if plotted on this same
graph, would produce a horizontal line, because it does not
have any correlations between magnitudes of mutational
changes. Wingreen et al. (2003) stated that:

‘‘. . . in the standard model for pleiotropic muta-
tions (Turelli, 1985), the magnitudes of the effects
of a single mutation on distinct traits are uncorrelated.
The absence of correlation leads directly to (a) the
suppression of mutations of small overall effect and (b)
the preservation of the perfect phenotype (Waxman and
Peck, 1998)’’.
The exponential mutation distribution given in Eq. (9)
provides an explicit counterexample to the above claim. We
have already established that the distribution of Eq. (9) can
yield a spike in the distribution of genotypic effects.
Defining L ¼ 2jg1j=m, the distribution of Eq. (9) has the
conditional expectation E½g2

i jg
2
1� ¼ ðm=2Þ

2
ðL2 þ 3Lþ 3Þ=

ðLþ 1Þ. To aid comparison with the result of Wingreen
et al. we set m ¼ m0=

ffiffiffi
3
p

so that the standard deviation of
mutant effects on each trait in both models is identical (and
equal to m0=

ffiffiffi
3
p

). The solid line in Fig. 5 gives the value of
E½g2

i jg
2
1�=m2

0 as a function of lnðg2
1=m2

0Þ for the exponential
mutation distribution of Eq. (9). The curve is a mono-
tonically increasing function of lnðg2

1=m2
0Þ, indicating

positive correlations between magnitudes of mutational
changes. The shape of the curve is different from the curve
of Wingreen et al. (dashed line); however, both curves are
broadly comparable in value, over the range of g2

1 plotted,
thereby indicating comparable positive correlations of
squared mutational changes on different traits.
The work of Wingreen et al. (2003) has been cited in the

work of Johnson and Barton (2005). The absence of any
correlations in the mutational distribution adopted by
Waxman and Peck (1998) (Eq. (7)) was taken as the sole
reason that a spike was present in our earlier results and
hence that there is ‘‘. . . a possible inadequacy of the model
. . .’’ (Johnson and Barton, 2005). In view of the exactly
soluble counterexample given above, where the exponential
mutation distribution allows both a spike and correlations
in the magnitude of mutational changes, it is evidently the
case that the existence of a spike is robust to some
deviations from the model of Waxman and Peck and the
objection of Johnson and Barton appears unjustified.
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The reason the mutational distribution of Wingreen
et al. does not predict any spike in the distribution of
genotypic effects is, we believe, solely associated with the
divergence of their distribution at g ¼ 0 and the presence or
absence correlations of magnitudes of mutation effects
appears to be an irrelevant side issue.

Pursuing this last point, the analysis of Section 3
indicates that in a regime of very low mutation rates, a
House of Cards approximation would predict a spike in the
equilibrium distribution of genotypic effects. Necessarily,
the mutation rate, u, should be small compared with the
critical mutation rate, uc;HC (see Eq. (4)). However, using
the mutation distribution of Wingreen et al. (2003) it
follows that

R
f ðkgkÞ=kgk2 d3g ¼ 1 and hence, from

Eq. (5), that uc;HC ¼ 0. The vanishing of uc;HC means that
for any non-zero mutation rate, no matter how small, there
will be no spike present. The vanishing of uc;HC holds, in
fact, for general O, for the mutation distribution of
Wingreen et al. (2003). It is an empirical question whether
the behaviour of the mutation distribution at g ¼ 0 is such
that it drives the critical mutation rate to vanish or allows it
to remain finite. We do not address this empirical issue
here.

Let us return now to the questions posed at the
beginning of this paper. The results we have presented
allow us to provide the following answers to these:
(i)
 The proportion of the population under the spike, A,
as calculated from the House of Cards approximation,
is in agreement with the results derived from the exact
expressions, when the latter are expanded to linear
order in the assumed small quantity u=ðsm2Þ. Addi-
tionally, the leading House of Cards approximation
for the genetic variance, VG;1, coincides with the exact
result for this quantity, when a spike is present in the
equilibrium distribution of genotypic effects.
(ii)
 Different distributions of mutant effects generally lead
to different critical mutation rates, uc, beyond which A

is zero.

(iii)
 The way the proportion A vanishes as the mutation

rate approaches the critical mutation rate, uc, depends
on the distribution of mutant effects; in the cases we
have looked at, A vanishes linearly at u ¼ uc, but with
different slopes for different distributions.
(iv)
 For all spherically symmetric distributions of mutant
effects that can lead to a spike in the equilibrium
distribution of genotypic effects, FðgÞ, the genetic
variance,V G;1, exactly equals u=s, when a spike is
actually present in FðgÞ.
(v)
 We have been able to find two cases of the distribution
of mutant effects where exact expressions can be
derived for the proportion A of the population under
the spike and the genetic variance, VG;1.
We approached the problem by first calculating the
characteristic function of FðgÞ (i.e. its Fourier trans-
form) and then derived the expression for A from this.
More generally we can use the characteristic function
to determine equilibrium expectations of combinations
of powers of the various gj.
(vi)
 We have been able to provide a robust numerical
approach that can determine A and more generally the
characteristic function of FðgÞ.
A comparison of the numerical approach with the exact
results suggests that the numerical methods presented here
work to extremely high accuracy.
There is always a suspicion, when only approximate

results are available, that one may not be in possession of
the full story. The exact results presented in this paper
firmly demonstrate that the singular equilibrium distribu-
tion of genotypic values predicted by Waxman and Peck
(1998) exists in continuum of alleles models of mutant
effects. The results also show that the singularity (the spike)
possesses a level of robustness; it exists for more than one
distribution of mutant effects, and can coexist with
correlations between magnitudes of mutational changes
on different traits, despite claims to the contrary that have
appeared in the literature.
Additionally, the arguments presented above also make

it clear that there is not just mathematical correctness to
the existence of a spike in the equilibrium distribution of
genotypic effects. There is also a genuine biological
meaning to the spike, when the difference of adjacent
discrete genotypic effects on any trait are very small
compared with the standard deviation of mutant effects on
the trait.
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Appendix A

In this appendix, we give the theoretical background to
results stated in the main text.

A.1. Analytical results

We start with Eq. (1) and note that if l40 then there is
no possibility of a spike ¼ Dirac delta function, dðgÞ, being
present in FðgÞ. Writing s ¼ s=O, this follows since if l40,
then

FðgÞ ¼ u

Z
f ðkg� hkÞFðhÞ dOh=½skgk2 þ l� (A.1)

and if FðgÞ ¼ AdðgÞ þ � � � with A a constant, the left-hand
side of Eq. (A.1) contains AdðgÞ, while the right-hand side
does not contain any delta function singularity, hence A

must be identically zero. When l ¼ 0 this conclusion
breaks down, since deriving Eq. (A.1) involves dividing by
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skgk2 þ 0 and this latter quantity vanishes at g ¼ 0. This
leads to the behaviour of FðgÞ being undetermined at
g ¼ 0.

Note that l cannot be o0 since if it is, apart from
singular behaviour arising at kgk2 ¼ jlj=s, the quantity
skgk2 þ l � skgk2 � jlj that is present in Eq. (A.1)
changes sign as kgk2 passes through jlj=s and hence so
does FðgÞ. Thus, to avoid negative probability densities, l
must be X0.

Given our focus, in this paper, on the properties of a
spike in the equilibrium distribution of genotypic effects,
FðgÞ, when O ¼ 3, we shall restrict O to this value and
restrict all further discussion to the case where a spike can
occur, namely l ¼ 0. We then need to investigate the
conditions under which FðgÞ is a meaningful probability
density for l ¼ 0 and this involves studying properties of

s

3
kgk2FðgÞ � u

Z
f ðkg� hkÞFðhÞ d3h ¼ 0. (A.2)

We proceed by Fourier transforming Eq. (A.2) (i.e. by
multiplying by expð�iq � gÞ, where q � g denotes the scalar
product of q and g, and integrating over all g). We use the
notation jðqÞ ¼

R
FðgÞ expð�iq � gÞ d3g and F ðkqkÞ ¼R

e�iq�gf ðkgkÞ d3g and note jð0Þ ¼ 1, since FðgÞ is normal-
ised to unity. We then obtain

�
s

3
r2jðqÞ � uF ðkqkÞjðqÞ ¼ 0, (A.3)

where r2 ¼ q2=qq2
1 þ q2=qq2

2 þ q2=qq2
3 is the Laplacian

operator in three dimensions.
It may be very plausibly argued that a spherically

symmetric solution is the long term outcome of dynamics
for FðgÞ and hence also jðqÞ. The latter is thus taken to be
a function of q �

def
kqk and r2 may be replaced, in Eq. (A.3),

by just its ‘‘radial’’ derivative part, d2=dq2
þ ð2=qÞ d=dq.

Eq. (A.3) takes its simplest form in terms of the function

wðqÞ �
def

qjðqÞ, (A.4)

which obeys

s

3

d2

dq2
þ uF ðqÞ

� �
wðqÞ ¼ 0, (A.5)

wð0Þ ¼ 0; dwðqÞ=dqjq¼0 ¼ 1, (A.6)

with the conditions on wðqÞ at q ¼ 0 arising from jð0Þ ¼ 1
and Eq. (A.4). Thus the problem at hand has reduced to an
initial value problem, where knowledge of wð0Þ and
dwðqÞ=djqq¼0 along with Eq. (A.5) are sufficient to
determine wðqÞ for all positive q.

The large q behaviour of wðqÞ determines the magnitude,
A, of any spike present in FðgÞ. To see this note that since
jjðqÞjp1, it follows that jwðqÞjpq. Thus for F ðqÞ such that
limq!1 qF ðqÞ ¼ 0, it follows that at large q, Eq. (A.5)
approaches ðs=3Þ d2wðqÞ=dq2

¼ 0 and wðqÞ approaches Aqþ

B where A and B are constants. This large q behaviour of
wðqÞ corresponds to jðqÞ behaving (for large q) as Aþ B=q

and this means that A is the coefficient of dðgÞ in FðgÞ (only
singular functions have Fourier transforms that do not
decay to zero at large q). Combinations of parameters
leading to A exactly vanishing correspond to the critical-
case where there is no delta function present in FðgÞ, but
l ¼ 0. Combinations of parameters leading to Ao0
correspond to the region where l ¼ 0 no longer applies:
the solution can then be negative for some g and it is then
necessary to introduce a non-zero value of l. The resulting
equilibrium distribution, FðgÞ, is non-singular.
The virtue of the distributions of mutant effects, f ðkgkÞ,

of Eqs. (8) and (9) is that they have very simple Fourier
transforms that lead to exact solution of Eq. (A.5). For the
distribution of Eq. (8), the Fourier transform is F 1ðqÞ ¼

sech2ðmq=
ffiffiffi
2
p
Þ and for upuc;1 (where uc;1 is given in Eq.

(11)). The corresponding solution of Eq. (A.5) is w1ðqÞ ¼
ð
ffiffiffi
2
p

=mÞ tanhðmq=
ffiffiffi
2
p
ÞF ðaþ; a�; 32; tanh

2
ðmq=

ffiffiffi
2
p
ÞÞ where

F ða; b; c; zÞ denotes a hypergeometric function (Abramo-
witz and Stegun, 1970), a� ¼ ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8u=uc;1

p
Þ=4 and uc;1

is the critical mutation rate given in Eq. (11). For the
distribution of Eq. (9), the Fourier transform is F 2ðqÞ ¼

ð1þ ðm2q2=4ÞÞ�2 and for upuc;2 (where uc;2 is the
critical mutation rate given in Eq. (13)), the solution of
Eq. (A.5) is w2ðqÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=m2 þ q2

p
=bÞ sinðb arctanðmq=2ÞÞ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u=uc;2

p
.

From the large q behaviour of these solutions, the
coefficient of q, when it is non-negative, coincides with the
coefficient A multiplying the delta function in the
equilibrium distribution, FðgÞ. The resulting A’s are given
in Eqs. (10) and (12) of the main text.
By contrast, the small q behaviour of the solutions is

given by wðqÞ ¼ q� V G;1q
3=2þOðq5Þ and from this we can

obtain the resulting V G;1’s. However, given spherical
symmetry of FðgÞ, it is simplest to determine V G;1 for l ¼
0 by integrating Eq. (A.2) over all g with the exact result
that VG;1 ¼

R
kgk2FHCðgÞ d

3g=3 ¼ u=s.

A.2. Numerical results

The numerical technique given in Section 5 also follows
from the same approach, since we proceed by numerically
solving Eq. (A.5), subject to Eq. (A.6), and determine A

(when it is non-negative) from the coefficient of q in the
solution at large q.
Lastly we note that there is an alternative numerical

approach that applies when there are O traits (not just
three, as above). In this case the radial part of r2 is
d2=dq2

þ ððO� 1Þ=qÞ d=dq and we solve �ðs=OÞ½d2jðqÞ=dq2

þððO� 1Þ=qÞ djðqÞ=dq� � uF ðqÞjðqÞ ¼ 0 for jðqÞ, again as
an initial value problem. To determine the initial data, we
assume a power series solution for jðqÞ: jðqÞ ¼ 1þ aq

þbq2=2þ � � �. Ensuring the series solves the equation leads,
generally, to a ¼ 0, hence we have jð0Þ ¼ 1, djðqÞ=
dqjq¼0 ¼ 0 and we have sufficient information to determine
jðqÞ. The large q value of jðqÞ coincides with the
magnitude, A, of any spike present in FðgÞ. There is a
slight subtlety of this approach, since we impose conditions
at q ¼ 0 and the differential equation contains a factor q�1
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which diverges at this point. Taking the initial point as a
small positive value of q rather than q ¼ 0, say q ¼ 10�6,
yields satisfactory results.
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