ERRATA

Observation of the Transition State HD$_2$$^+$ in Collisions, H + D$_2$

B. A. Collings, J. C. Polanyi, M. A. Smith, A. Stolow, and A. W. Tarr

The transition state should read HD$_2$$^+$ instead of HD$_2$$^{++}$ in the title and text of these communications (no doubly charged ions figure in this work).

Critical Magnetic Field Dependence of Thermally Activated Surface Processes

U. Seifert and H. Wagner

Professor H. Suhl has pointed out that he already stressed in his work [Phys. Rev. B 11, 2011 (1975)] the importance of the disparate time scales of heat-bath and reactant motions and gave a simple solution in the limiting case of slow substrate motion. Although we referred to his paper (Ref. 9), we should have mentioned this point explicitly to avoid the impression that previous work was oblivious of the problem of time-scale separation.

Equation (2) should read

$$\begin{align*}
r(T,0) - r(T,H) & \sim \begin{cases}
H^{1/2}, & \text{for } T > T_c, \\
H^{2/3}, & \text{for } T = T_c, \\
H, & \text{for } T < T_c.
\end{cases}
\end{align*}$$

(2)

Scattering and Bound States of Quasiparticles at the A-B Phase Boundary of Superfluid 3He

N. Schopohl and D. Waxman

The integration measure of Eq. (3) should be replaced by

$$\frac{d\omega}{2\pi}.$$

In the second paragraph following Eq. (3), two equations involving the transformation $K(\omega)$ contain misprints and should read

$$K(\omega)[H + (\omega/2)\tau_3]K(\omega) = E(\omega)\tau_3,$$

$$K(\omega) = \frac{[E(\omega) + \omega/2]\tau_3 + H}{[2E(\omega)[E(\omega) + \omega/2 + \epsilon]]^{1/2}}.$$