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The dynamics of charged particles moving on a circular ring of negligible thickness is
investigated. The ring has a time-dependent magnetic flux passing through it and contains a
scalar potential consisting of one or more attractive wells which can bind the particle in
negative energy states. For a scalar potential containing a double well structure formed from
delta function potentials, the eigenfunctions, in the presence of a static flux, are determined
exactly. Only the lowest two eigenstates have negative energies and these are weakly split by
tunnelling. For variations of the flux that cause negligible mixing of these states with positive
energy states we truncate the system to only the negative energy states. These two states
constitute a novel kind of two-level system whose time evolution we have determined for
fluxes that change suddenly or at a constant rate. In the latter case we find a coherent
oscillation between the instantaneous eigenfunctions of the Hamiltonian.  © 1994 Academic

Press, Inc.

1. INTRODUCTION

When a particle moves on a ring of negligible thickness, it is natural to use the
angular coordinate ¢ to describe its position. In classical mechanics, such an
angular variable hardly merits a second glance as to its status as a descriptive
coordinate. Apart from a possible restriction of its range (e.g., to the interval —n
to m), an angular coordinate appears on the same footing as cartesian coordinates
such as x, y, or z. In quantum mechanics the situation is not quite so simple.
A particle on a ring has a wavefunction {(¢) with the periodicity

Yo +2n)=y(9). (1.1)

The product ¢y (¢) lies outside the space of functions obeying Eq.(1.1), indi-
cating that ¢ is inadmissible as an operator on the space of wavefunctions.
A necessary requirement for a function of ¢ to be allowed as an operator is that
the function have a 27 periodicity.

There has been much previous work on the kinematic/geometric aspects of phase
angles: it can be traced, for instance, from Refs. [1].
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Here we aim at exposing some of the less obvious quantum dynamical properties
of a system having an angular degree of freedom, namely a charged particle moving
on a ring which encloses a magnetic flux. We are aware that such systems have
come under investigation since microfabrication techniques have allowed the
construction of small metallic rings with mesoscopic properties [2]. However, we
have not seen any detailed discussion of the less elementary dynamical properties
of such motion, and the present work aims to initiate such a discussion.

We consider a particle moving on a circle in the presence of both scalar and
vector potentials. Each is chosen to respect the identification of the points ¢ and
@ + 27, and between them they allow us to prove some nontrivial properties of the
system.

This paper is arranged as follows. In Sections 2 and 3 we determine general
expressions for the quantization condition and eigenfunctions of a particle on a
circle with a general symmetric potential and a static flux. In Section 4 we apply
these results to potentials containing one and two attractive delta function wells. In
Section 5 the problem with a double well potential is truncated to the lowest two
eigenstates of the Hamiltonian, and the time evolution equation is determined when
the magnetic flux varies with time. Section 6 treats the time evolution when the
magnetic flux changes suddenly. In Section 7 the time evolution operator is found,
in approxiate form, for a magnetic flux that changes at a constant rate, and two
applications of this approximation are made in Section 8. Section 9 is a brief sum-
mary and there are four appendices, three of which discuss different aspects of
motion on a circle. We use a prime, ', to denote the differentiation of a function
with respect to its argument and an overdot, °, to denote differentiation with respect
to time.

2. PRELIMINARIES FOR THE TIME INDEPENDENT SCHRODINGER EQUATION

We consider a particle of mass m, charge e, moving on a circle of radius R with
the angle ¢ describing its position. In what follows we ignore the spin (if any) of
the particle and treat only its spatial degree of freedom.

The particle experiences a scalar potential F(p) that is periodic:

V(g +2m) = V() (2.1)

and a vector potential, A, with a component, 4, only in the ¢ direction,
independent of ¢ and, until further notice, independent of time.

The line integral of A around the circle specifies the net magnetic flux through
the circle. Any dependence of A on the radial coordinate is irrelevant since we
require A only on the circle.

In units of the flux quantum,

&y = he, (22)
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the magnetic flux is

y=§ A -dlj®,=eAR/h. 2.3)
The time independent Schrodinger equation of the system is
1 ih d 2
|5 (- Rao—ea) +¥(@) | o) = Buco) (24)

where y obeys the periodic boundary condition given in Eq. (1.1).
With the introduction of the dimensionless quantities

u(@)=(2mR*/R*) V(p), (2.5)
¢ = (2mRYH)E (2.6)

we can write the time independent Schrodinger equation in a dimensionless form.
With 0= 0d/d¢, we have

[—(0—in) +u(e)]y =ey. (2.7)

Henceforth we shall refer to this as the time independent Schrédinger equation and
to ¢ as the energy.
We define an auxiliary function

Sl@)=exp(—iup) Y{p) (2.8)

which satisfies
[—2°+u(e)1f (@) =¢f (@) (29)

The physical identity of the positions ¢ and ¢ + 27 is embodied in the boundary
condition of Eq. (1.1), and it follows that f(¢) obeys the boundary condition

S+ 2m) =exp(—2min) (o). (2.10)

Equation (2.10) shows that the function f{(¢) acquires a phase change each time
¢ is incremented by 2z. The same happens when the coordinate of an energy eigen-
function in a one-dimensional crystal is increased by one period of the lattice.
(This analogy underlies the version of the quantization condition outlined in
Appendix A.) The difference between the two problems is that for a particle on a
circle only a single phase factor, exp(—2miu), is picked out by the external magnetic
field, whereas in a crystal all phase factors are permitted and these label the states
in a band of the crystal. Consequently, an eigenstate on the circle, for a fixed
magnetic field, corresponds to only a single state of a band in the crystal.
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3. GENERAL FORM OF THE QUANTIZATION CONDITION AND WAVEFUNCTIONS
FOR SYMMETRIC POTENTIALS

We assume throughout that the potential u(¢) appearing in Eq.(2.9) is
symmetric about a reference point which we take to be ¢ =0. We restrict ¢ to
the interval (— =, n) and impose the boundary conditions

S () = exp(—2mip) f(—n)
J'(m) =exp(—2mip) f'(—7)

(3.1)

which are equivalent to Eq. (2.10).

To proceed, we consider Eq. (2.9) for general values of e. It has two linearly inde-
pendent solutions, which may be arranged to have definite parity. Let us take them
as f,(p) and f.(@), where the functions are odd and even, respectively:

fo(—(p): —fo((p)’ .f;(_(p)zfe((p) (32)

We impose the boundary conditions of Eq. (3.1) on

flo)=flo) +folo), (33)

which, up to an overall normalization, is the general solution to Eq. (2.9). Using the
definite parities from Eq. (3.2) we obtain

Je(m) + cf o (m) = exp(—2mip) [ f.(n) — f () ] (34a)
fe(m)+ of o(m) = exp(—2mip)[ —-fc(m) + cf (7). (3.4b)

Eliminating the amplitude ratio, ¢, from these equations yields the quantization
condition on the energy ¢,

Lfo(m) fe(m) +fe(m) fo(m)] + cos(2uu) [ fo () fe(m) — fe(m) fo(m)]1=0.  (3.5)

A shorter form of Eq.(3.5) emerges on noting two points: (i) The first term in
square brackets is a total derivative. (ii) The coefficient of cos(2mu) is the
Wronskian of the two solutions f, and f, and is independent of where it is
evaluated. A particularly simple form is obtained at ¢ =0; it leads to the compact
form for the quantization condition,

;j’; L12(9) £u(@)]1 - n—£o(0) £4(0) cos(2mu) = . (36)

To find the amplitude ratio, ¢, of Eq.(3.3), we solve Egs.(3.4a) and (3.4b)
separately for ¢. A simple form for ¢ is obtained if we add the results from
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Egs. (3.4a) and (3.4b). With similar considerations to those leading to the
quantization condition, this leads to

o= L cosQau)d/dp)lfo(@) fe(@)]lo = —e(0) /o(0)
5 :

7
sin(2ma) fo(m) f(7) (37)

Using the quantization condition, Eq. (3.6), to eliminate the coefficient of cos(2un),
we obtain the compact form

c= —isin(2nu)M(0—) (3.8)

2 So(m) fo(m)

Equation (3.6) for the quantization condition and Eq. (3.8) for the wavefunction
amplitude ratio apply for general symmetric potentials, whose particular form
determines f, and f, up to a multiplicative factor.

4. EXAMPLES OF EIGENFUNCTIONS AND EIGENVALUES FOR PARTICULAR POTENTIALS

To see some of the content of the general resulits of the previous section we shall
consider two different potentials, To avoid the need for distracting discussions
about approximation schemes for the functions f, and f, we choose potentials
involving only Dirac delta functions, which admit results in closed form. In terms
of the potential u(p) of Eq. (2.5) we choose

uy (@)= —22(¢p) (4.1)
uy (@)= —248(¢ — n/2) — 246(¢ + 1/2), (4.2)

where for definiteness we restrict the parameter 4 to be positive. We shall find it
natural to express the functions f,(¢) and f;(¢) in terms of the variable

k=./—¢. (4.3)

Appendix A sketches an alternative approach, applicable to any number of
evenly spaced delta functions, but probably less ready to supply all the information
we shall need about wavefunctions.

(i) Single Delta Function Potential
For the potential u,(¢) of Eq. (4.1) we find that

Jol®; k) =sinh(kp) (4.4a)
Jel@; k) = cosh(kg) — (4/k) sinh(k |¢]). (4.4b)
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The quantization condition, Eq. (3.6), vields the relation

_ Jsinh(2mk)
"~ cosh(2nk) —cos(2mu)’

(4.5)

We shall consider solutions of this equation ony for the case of negative energies
and furthermore assume that

I'y=2exp(—2ni) < 1. (4.6)

Then the expression on the right of Eq. (4.5} can be developed as a series in [,.
Only a single negative energy state exists having

k=A[1+ T, cos(2nu)+ O(I'})] (4.7)

and
e= —A’[1+2I, cos(2rmu)+ O(I'})]. (4.8)
The factor I', is associated with a particle of energy ¢ = —A® tunnelling an

angular distance of 27 through the potential. Thus the cosine modulation of the
energy results from the particle tunnelling around the circle and simultaneously
being affected by the line integral of A—that is, the magnetic flux through the circle.
In classical mechanics, apart from there being no tunnelling, there would also be no
effect of the magnetic field on the motion or energy of the particle, since the Lorentz
force is everywhere normal to the circle.

It is interesting to note from Eq. (4.8) that for g =0, tunnelling around the circle
shifts the energy downward. We devote Appendix B to a discussion of this topic.

Let us now consider the implications of Eq. (3.8) for the amplitude ratio. We find
that

c=—isin(2ap) Il + O(I'3). (4.9)
By virtue of Eqgs. (2.8), (4.4a), and (4.4b) the eigenfunction then reads
Y(@)= Nexp(ipg)[ fo(p; k) —isinQ2np) I'y fo(9; k)] (4.10)

N is a real normalization constant such that {y|¢ > = (" de |¢|>=1. Note that
the value of k used in the functions f, and f, has to be taken from Eq. (4.7).

(ii) Double Delta Function Potential
For the potential u,(¢) of Eq. (4.2) we find, in the range 7> ¢ >0,
Jol@; k) =cosh(kn/2) sinh(k¢), /2>¢p>0

= cosh(kn/2) sinh(kg) — (A/k) sinh(kn) sinh[k(¢ — /2)], n>@>n/2
(4.11a)
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Jf.(@; k)=sinh(kn/2) cosh(ke), n2>¢>0
= sinh(kmn/2) cosh(ke) — (4/k) sinh(kn) sinh[k(p — 7/2)], > >n/2.
(4.11b)

For positive ¢, f,(@; k) and f_(¢; k) achieve their maximum values at ¢ = n/2. The
particular normalizations of f, and f, have been chosen by hindsight so as to yield
the simplest form for the amplitude ratios.

After some rearrangement, the quantization condition following from Eq. (3.6)
can be written in the form

4 sinh(nk) A sinh(nk) B
<k " cosh(zk) - COS(M))(k ~ cosh(rk) + cos(n,u) =0 (4.12)

Alternatively, Eq. (4.12) emerges as a special case of Eq. (A.10) in Appendix A.
We again consider only solutions with negative energies and assume that

I=2exp(—7l)< 1. (4.13)
Equation (4.12) yields a pair of negative energy states with
k, =A[1+TI;cos(mu)] + O(I3) (4.14)
and energies
ey = —A[1 425, cos(mu)] + O(I'3). (4.15)

In other words, the “tunnel splitting” between the ground and the first excited
states is modified by the magnetic flux.
The amplitude ratios ¢, are given, with no approximation, by

¢, = —itan(np/2)
¢ = —icot(nyu/2)

and lead to the normalized eigenfunctions!

Y. (@)= N expling)[cos(ny/2) fole@; k) —isin(np/2) fo(@; k)] (4.16a)
¥ _ (@)~ N_ exp(iug)[ —isin(nu/2) f.(@; k_)+cos(ny/2) fo(@;k_)], (4.16b)

with N, taken to be real.

For most values of u, Egs.(4.10) and (4.16} yield essentially complex energy
eigenfunctions, reflecting the fact that stationary states on a circle threaded by a
magnetic field carry a nonzero current j= —(ig/2)(Yy*y' —y*'yy). The same

! The main purpose of our notation f, ,(¢; k) is, precisely, to emphasize that the k-vectors used in
V. (¢) and ¥ _(¢p) are generally different.
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conclusion follows directly from the spectrum (i.e., from Eq. (4.8) or Eq. (4.15)}, in
view of the relation

J= —dg/du. (4.17)

The origin of Eq. (4.17) is best appreciated by considering an adiabatic (arbitrarily
slow) increment du over a time interval dr. Then Faraday’s law entails an
e.m.f. — du/dr, leading to an energy change de=dt(—du/dt) j= —jdu which is
equivalent to Eq. (4.17).

Finally, we recall that Byers and Yang [3] have formulated theorems about the
energy spectrum of a particle on a circle in a magnetic field. In Appendix C we
discuss these theorems in the light of the explicit results of Eqgs.(4.8) and (4.15).

5. EQUATION OF MOTION IN THE DOUBLE DELTA FUNCTION POTENTIAL
WHEN gt VARIES WITH TIME

We now consider the dynamical behaviour of the system by allowing u to vary
with time. It is assumed that the variations with u are slow on the scale of 2 so
that any mixing of the negative energy states with those of positive energy is
negligible. Working in this approximation it is consistent to deal with our system
truncated to only the negative energy states.

A single delta function potential, with its single negative energy level, leads to a
trivial dynamical problem that is determined by the adiabatic theorem: energy and
wavefunctions are given by Eq. (4.8) and by? exp[ —i [" ds e(u(s))] () with Y (o),
from Eq. (4.10), governed by the instantaneous value u(r) of the flux. Accordingly,
the interesting dynamical problem to study is the behaviour of the two negative
energy levels of the double delta function potential, u,() of Eq. (4.2).

To investigate the dynamics induced by a variation of p with time, we omit
arguments ¢, and set

wr=aexp| =i [ dse, (us) |b . (u(o)

+b(z)exp[—i [lase. tu(s))] b)), (51)

The parametric dependence of  , on u(r) is displayed explicitly. Next we substitute
¥ into the time dependent Schrodinger equation

[—@—in®) +ule)y=idy. (52)

?We use a time variable, ¢, that is rescaled relative to the time, Loniginat that occurs in the original,
unscaled, Schrédinger equation. The relation between the times is 1 = (2mR*/h) lyiginal-
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Projecting the resulting equation onto ¢, and ¥ _, respectively and using 7,
defined in terms of the energy levels of Eq. (4.15) by

()= = [ dsle. (us) =2 (us))]

4227, [ ds cos(mu(s)), (5.3)
0
it follows that
a+<Y, ¥, >are Y, 1Y _Yb=0 (5.4a)
b+ Y _db+e"Y_|y, da=0. (5.4b)

The time derivatives such as i , |/ , > appearing in the above equations are more
naturally expressed as derivatives with respect to pu, since it is the variation of this
parameter that induces the time dependence of the ¢ ,. We thus write
Y, 1, >=4hly, |0y, /du> etc. In Appendix D we show that

Yo ly,/ouy=0, (Y [oy_joud=0

(5.5)
T
Yoy, Jopd =<y, oy _Jjou) = —15F2+0(F§)-
Thus the amplitudes a and & follow from the equation of motion
d[a T . a
Z(0)=i5nan o () (56)
where M(t) is the matrix
0 e~
M(t)=< in(0) )EO’ICOS n(t)+ o, sin(n(t)) (5.7)
e’ 0

and o,, i=1, 2, 3, are the usual Pauli matrices.

We should note that in Eq. (5.6), the coefficient of ji(¢), namely i(n/2) I", has only
been calculated to leading order in I, and, as a consequence, the equation is not
an exact description of the time evolution.

6. SUDDEN CHANGES OF u

As an application of Eq. (5.6), let us consider a change of u(r) that is fast on the
timescale I"; " but still slow on the scale of 272 so as to stay in the two level
truncation.

Then we can adopt a Heaviside step form for p,

u(t) = poO(1) (6.1)

595/231/1-10



136 BARTON AND WAXMAN

leading to

d[a T a
4 (b) =12 Faptg 80) M(1) (b) 6.2)

In this equation the known matrix M(¢) is ontinuous at =0 and equal to
the Pauli matrix o,. By contrast, the unknown functions (&, ) remain to be
determined and may not be assumed to be continuous.

To solve for (a, b) we diagonalize ¢, and obtain

d o
(@t b)= +iz Dot 0(0) (6.3)

These differential equations for (@ + b) may be integrated and with
a;\ _(a(t<0)
()= (o) (©4)

<ZE§;>=exp (i%l’zuo@(t)a,)<‘bli>. (6.5)

The manifestation of the sudden approximation that appears above is very simple
and should be contrasted with the standard treatment where the overlaps such as

Y4 (o)1 4 (0)) are required.

we obtain

7. EVOLUTION UNDER {4 INCREASING LINEARLY WITH TIME

We continue to work with the lowest two levels of the double delta potential and
consider, for simplicity, the case where u, over some time interval, changes linearly
with time. Thus we set

u=pt (7.1)

with § independent of +.3
Let us consider K{(z) the 2x 2 matrix that evolves (;'o)) from time zero to time r:

a(t a0
(1) =K(1) (0) . (7.2)

b(t) b(0)
3 For small but not necessarily constant B, it is fairly straightforward to design a stationary-phase
approximation to the transition amplitudes between i . ; it accomodates the leading-order contributions,
which arise from the level-crossings that occur at half-integer values of u. The drawback of the

method is that, after many level crossings, it accumulates errors far faster than the procedure described
below.
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Then K(t) obeys*

d
EK(t)=igl“2 AM(1) K(1),  K(0)=1. (1.3)

Here it proves convenient to use u = fr rather than ¢ as the independent variable.
Instead of writing K(t(u)), n(#{11)), and M(t(u)) we write K(u) etc. We find from
Eqgs. (5.3) and (5.7) that

M(u)= 0, cos n(u) + o, sin n(u), (7.4)
42
n(p)=asin(apu), a=-—71, (7.5)
np
and the K(u) obeys®
d
— K(u) =15 I M) K() (7.6)
i

The formal solution to this equation is
i M
K(u) = Texp I:izfzf dv M(v)}, (1.7)
0]

where T is the time ordering operator.
We shall argue below that

K(1) = exp [igrz j“dv M(v)+0(yr§)J (1.8)
0

supplies an accurate approximation for values of u such that uI"3<1 but with no
restriction on uf .
The approximation to K(u) stems from three facts.

(i) The matrix M(u) is periodic over an interval of O(1):

M(p+2)=M(p). (7.9)

* The matrix M depends on ¢ and hence the problem is not translationally invariant in time. It would
be more explicit (and cumbersome), to write K(¢; 0) rather than K(¢) since K evolves the amplitudes
from time zero to time {. We shall use the notation K(¢) with the warning that K(¢,) K(¢,) does not,
generally, equal K(1, +1,).

5 Although I, is small by assumption, we stress that solutions are required for values of o that may
be large as well as small.
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Because of this, K(u+2) obeys the same equation as K(p) and from
Lim, ., K(u+2)=K(2) it follows that we can write

K{p+2) = K(u) K(2), (7.10)

a result equivalent to Floquet’s theorem on periodic functions.
(ii) The elements of M(u) are of O(1).
(i) I,<1.
To derive Eq. (7.8) we consider two cases:

(1) u<2. Here, since M(u)is O(1), (7/2) I, {& dv M(v) is O(I";) and K obeys

K(u)=1+i§rzj”dv M(v)+0(I?) (7.11a)

=exp[ffrzj“de[v)JrO(rg)]. (7.11b)
2 0

Since u is O(1) we can, equivalently, write the correction to the integral in the
exponent as O(ul’2), making Eq. (7.11b) indentical to Eq. (7.8).

(2) pu=u,+2n:u,<2, nis an integer. Here we repeatedly use the property
of Eq. (7.10):

K(p +2n) = K(p,) K(2n) = K(p,)[K(2)]" (7.12)

with K(u,) and K(2) given by Eq. (7.11a) for y=pu, and 2, respectively. We then
have

k) =(143 15 v+ 0rd))
i o
—exp nlog(1+i5r2f de(v)+0(r§))]
L (4]

- ,
=exp i—an_[ de(v)+0(n1’§)]
L 2 0

r 2n
— exp igl“zf dv M(v) + O(nrg)], (7.13)
| 0
the last step using the periodicity of M(u). Last, we write
i3 H1
K I =exp | i35 [ v M)+ 0D |

2n
X eXp [igrzf dv M(v)+0(nr§)]. (7.14)
0
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Since the integrals in the two exponents are of order I', and nl',, respectively, we
can add them, to form a single integral, with the generation of additional, O(nI"3)
corrections. Since n is O(u), the resulting form is equivalent to Eq. (7.8), the result
we sought to establish.

We note, finally, that there is another source for the O(ul'3) corrections to the
integral in Eq.{(7.8). These come from the O(I'3) correction in Eq. (5.5), which
combine with the O(u) contribution of the integral of M(v) to give a correction to
the stated order. It follows that to calculate beyond the order we have already
established requires significantly more effort.

8. Two APPLICATIONS OF THE APPROXIMATE EVOLUTION OPERATOR

In this section we apply the approximation to the evolution operator

K(u) ~ exp [igl“z f: dv M(v)] (8.1)

to two different situations.

(i) Sudden variations in u. Let us return to the case of sudden variations of
i, treated in Section 6. We assume g has the form

u(t)y=0 t<0
= puot/T, T>t>0
= U, t>T. (8.2)

Equation (8.1) applies for u in the range p,> p>0; outside this range, K(uj is
constant. In the limit 77— 0, we would then expect to reproduce the results of
Section 6. We have, from Egs. (7.5) and (8.2),

42
o=—>1T7,. (8.3)
Ttho

Thus, in the limit 7 — 0, the parameter « vanishes. It follows from Egs. (7.4) and
(7.5) that

Lim M(y) = o,. (8.4)

T—0

Substitution into Eq. (8.1) for u = u, (corresponding to times ¢ > T} then yields

K(o) = €xp [igrzuool] (8.5)
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which is equivalent to Eq. (6.5). More generally we could keep T finite and trace
the evolution of the amplitudes through the region of changing .

(i) Variations at arbitrary speed over times ~(fI',) '. Equation (8.1) is a
good approximation to K(u), provided the inequality /"3 <1 is satisfied. Since I,
is small we may consider values of u = ¢ which are of order I"; ', i.e., large but still
satisfying the inequality. In order to evaluate K(u), we require an integral over
M(v) which from Egs. (7.4) and (7.5) involves

C(u; CX)EJ-# dv cos(a sin(nv)) (8.6)
0
and
S(v; o) = j“ dv sin(a sin(wv)). (8.7)
0

With ¢ the fractional part of u/2,
0=u/2—[1/2], 1>620, (8.8)

we can write

Clu;a)=u Ll dv cos(a sin(nv))

28 1
+ [ [ av cos(asin(mv)) - 26 j dv cos(a sin(nv) )]
0 0
= puJo(x) + O(1) (8.9)

S(,u;oc)=f:6 dv sin(a sin(nv)) = O(1), (8.10)

where J, is a Bessel function of the first kind with order zero [4].

Since C(u; o) and S(u; «) enter the exponent in K(u) only premultiplied by 7,
we can make a further approximation by keeping only the systematically increasing
part of M(u), ie., omitting the O(1) corrections to C(u; &) and all of S(u; «) which
is O(1). The result has a simple form,

K(H) = eft"/2) leo(a)usl(l + 0(r2))
= {cos (g ero(a)ﬂ> +io, sin (g FzJo(a),u>} (1+0(I,), (8.11)

which is useful when (n/2) I, Jo(2) ¢t is not small compared with unity.
Recall, from Eqgs. (5.1) and (7.2) that K(u) acts on (5(g)) to yield () which
are the amplitudes of the eigenstates ¥, (u(z)) of the instantaneous Hamiltonian
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corresponding to flux u(¢).° Thus the implication of Eq. (8.11) is that for a flux
increasing linearly with real time, the system oscillates coherently between the
adiabatic basis states ¥ , (u(¢)) and ¥ _(u(t)), so that if it started from v, (u(¢)) at
time t=0, then it would be in ¢ _(u(¢) when p=1/(I",J,(a)), ie, at time
1/(BI,J(at)). Thus with

y=BI,Jy(2), (8.12)

we have in general that
Y(t) = [cos (gyt) a(0)+isin (g yt) b(0):| exp l:—in dse, (u(s))} ¥ (u(e))
0

+ |:i sin (gw> a(0) + cos <§yt) b(O)] exp [—i L dse._ (/,t(s))] v (u(0)).
(8.13)

Note that there is an exception to the coherent oscillations between the adiabatic
basis states if J,(2) =0, i.e., if the parameter a is a zero of the Bessel function.

9. SUMMARY

In this work we have investigated the dynamical behaviour of a charged particle
on a ring subject to both a scalar potential and a time dependent magnetic flux
through the ring. For the case of a scalar potential with a double well structure, the
lowest two eigenstates form a novel kind of two level system whose time evolution
we have determined for fluxes that change either suddenly or at constant but
otherwise arbitrary speed.

APPENDIX A:
N UNIFORMLY SPACED DELTA POTENTIALS ON A RING ENCLOSING FLUX

We reformulate the eigenvalue problem along the lines familiar from energy
bands in a one-dimensional crystal. The analogy is instructive and furnishes a
convenient expression for determining the eigenvalues for arbitrary N. Consider the
equation

=0 (x) =24 ), 0(x ~na) f(x) = ¢*f (x). (A1)

%y, and ¥ _ change with time only due to their parametric dependence on u = pu(z). As u increases
by unity, they transform, apart from a phase factor, into each other. Furthermore, at p=n+1,
n = integer, the eigenvalues, Eq. (4.15), cross each other. Eq. (8.11) therefore describes the consequences
of many level crossings.
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The range of the summation (i.c., the number of lattice sites), the lattice spacing a,
and the boundary conditions are left open until further notice. We can switch from
positive to negative energy by the replacement g — ik.

The general solution of Eq. (A.1) can be written

f(x)=r,cos[g(x —na)] +s, sin[g(x — na)], na<x<(rn+1)a (A2)

Then the continuity of f and the jump condition on d¢ across x=na may be

manipulated to yield
r r
() ~zaa()) (A3)
s n+1 s n

cos(ga), sin(ga) ] (A4)

g a)= [( _sin(ga) — (24/q) cos(qa)),  (cos(qa) — (24/q) sin(qa))

By induction (r, 5),,, y = Z"(r, 5),. The eigenvalues of Z read
z, =cos(qa) — (4/q) sin(ga) £ [(cos(ga) — (4/¢) sin(ga))* — 112 (A.5)

On an unbounded lattice, propagation is possible only in the allowed bands,
where the radicand is negative and the z, thereby complex, of modulus unity and
complex conjugates of each other. Accordingly, bands are allowed subject to

— 1< cos(qa) — (4/q) sin(ga) < 1. (A.6)

On a ring with N sites we have a=2n/N and identify f/ in Eq. (A.1) with the
auxiliary function f from Eqgs. (2.8)-(2.10). In particular, the boundary condition
Eq. (2.10) now requires that (r, 5)y = (r, 5), €xp(—2miu); thus Z" has an eigenvalue

zV =exp(—2nmin), (A7)
whence

z_ =exp[ —2mi(u+ p)/N1, p=0,1,..,(N-1), (A.8)
which in the light of Eq. (A.5) entails
cos(2ng/N) — (1/q) sin(2rng/N) = cos[2n(u + p)/N1, p=0,1,..,(N—=1). (A9)
For negative energies (g — ik) this reads,

cosh(2nk/N) — (1/q) sinh(2nk/N) = cos[ 2n(u+ p)/N ], p=0,1,..,(N—1)
(A.10)

Setting N=1, p=0, we recover Eq. (4.5); setting N=2 and p=0, 1 we recover,
respectively, the first and second factors on the left of Eq. (4.12).
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APPENDIX B: TuNNEL LOWERING ON A CIRCLE

We consider a single symmetric attractive potential on a circle without magnetic
flux and estimate by how much the ground-state energy is lower than for the same
potential on the unbounded x-axis. For simplicity, we shall (eventually) restrict
ourselves to a tightly bound state in a narrow well, where the ranges of the poten-
tial and wavefuntion are both much smaller than the circumference of the circle.
This covers the situation considered in the body of the paper. The method is an
adaptation of a more general procedure developed elsewhere [5].

The real, nodeless, even-parity ground states on the line and circle obey’

—Yo(x) +ulx) Yolx) =eo¥olx), Yol o0)=0 (B.1)
=Y (x)+ulx)Y(x)=(eo+ ) Y(x), Y'(=L)=0=y'(L) (B.2)

We introduce an (even) function g(x) defined by
Ylx)=g(x) Yolx); (B.3)

then the boundary condition (L) =0 entails the effective quantization condition

gVolxar=—8Volxa1r- (B.4)

We shall obtain an approximation to the energy shift A4 through suitable
approximations to g and y,.

Subject to the simplifying assumptions stated above, we may, over most of the
circle (including the “outer regions” x ~ + L) write

bo(x)xMexp(—qlxl),  q= ~/e, (B.5)
where M is a constant. By hindsight, we choose to norm g through
g(0)=1 (B.6)

and expect appreciable departures of g(x) from unity only where 4 is very small.
Substituting Eq. (B.3) into Eq. (B.2) and then multiplying by /,, one eventually
obtains

d
(83 =— g Vi) (B.7)

"It is worth noting that, for even-parity states on a circle, the first periodicity condition (namely
Y(—Ly=y(L)) is satisfied automatically, leaving only the Neumann boundary conditions indicated in
Eq. (B.2). Conversely, for odd-parity states, the second periodicity condition ¢'(— L) =4'(L) is satisfied
automatically, leaving only the Dirichlet conditions (L) =0= (L), which are those considered in [5].
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Since g is even and g’(0) therefore vanishes, this integrates to

L)Y = —4 | dx g(x) W) (B3)
Division by ¥2 and further integration, plus Eq. (B.6), then lead to
L 2 x
g(L)=1-4 jo dx o 2(x) [0 dx’ g(x') Y3(x'). (B9)

Finally we substitute into Eq. {B.4) from Eq. (B.9), and the expression for g'(L)
obtained from Eq. (B.8). Some rearrangement then yields

s {[7 e 93 oL L) | ()
0 (4]

<[ dx'g(x) n/zé(x')} = Yol L) Yol L), (B.10)

Equation (B.10), still exact and exploited systematically in [ 5], governs 4. Under
our present assumptions, i.e., to leading order in exp(—g¢L), it is readily
approximated as follows: (i) The first term within the curly brackets reduces to half
the normalization integral for y,, i.. to 1. (ii) In the second term, the outer integral
is dominated by the region x ~ L, where ¥, nearly vanishes, according to Eq. (B.5).
Hence the inner integral can (here as in the first term) be replaced by 3. (iii) In the
outer integral, 2 is approximated by Egq.(B.5); and (iv) so is Yo(L) ¢o(L) =
—gM? exp(—2¢L) on both sides of Eq. (B.10). We find

A~ —4gM? exp(—2qL). (B.11)

This confirms the fact, already plausible from Eq. (B.10), that A4 is negative.®
To make the connection with the ground-state energy of Eq. (4.8) for 4 =0, we
consider the potential —24 §(x) and choose L == This yields

g=4 M=%  Ar—432exp(—2ni)= —2iT, (B.12)

in complete accordance with Eq. (4.8).

APPENDIX C: DIFFERENT REALISATIONS OF THE BYERS—YANG THEOREMS

In this appendix we examine how different scalar potentials, u(¢), can result in
quite different realisations of the theorems originally formulated by Byers and Yang
[3] for the problem of fluxoid quantization in superconducing rings.

8 To put this conclusion into mathematical perspective, we note that it follows from replacing the
boundary conditions at infinity in Eq.(B.1) by Neumann conditions at +Z. By contrast, Dirichlet
conditions at + L raise the energy (i.e., they yield a positive 4), as discussed in [5].
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For our purposes, the theorems simply assert that the set of energy levels is even
and periodic in g, with period unity; where, as in Eq. (2.3), p is the magnetic flux
through the circle, measured in units of @, = h/e.

For orientation we first consider the case of vanishing potential. Solving Eq. (2.7)
for this case with periodic boundary conditions, one finds eigenfunctions
(2r)~ "2 exp(inp) and eigenvalues

E,=(n+p)? n=0,+1, +2, +3, ... (C.1)

Thus under the change p— u+1 individual levels move to the position of
one of neighbouring levels before the change. But the set of energy levels
{E,:n=0, +1, £2, ..} maps back into itself:

{Ea} =57 (B} (C2)

It is therefore periodic with period unity. Furthermore, since both the labels n
and —»# are included, the set is even in p.

Quite different behaviour, but equally compatible with the theorems, is exhibited
by Egs. (4.8) and (4.15), which, although only a subset of the complete spectrum,
do constitute closed sets under the change p— u+ 1.

Equation (4.8) gives the ground state energy for a single delta function potential
on a circle. In this case the level does not move to a neighbouring level as u changes
by unity. Instead it simply oscillates with g, with period 1.

Equation (4.15) gives, for a pair of closely spaced states in a double well potential
on a circle, another type of behaviour. Here the change u — p¢ + 1 results in the two
levels interchanging their position.

APPENDIX D: DETERMINING COEFFICIENTS IN THE EQUATION OF MOTION
FOR THE DOUBLE DELTA FUNCTION POTENTIAL

In this appendix we calculate the matrix elements <y |0y, /dud,
Y _jog_jeud, <oy, /ou), and (Y, |8y _ /ou) for the double delta function
potential on a circlee. The Dirac notation corresponds to <alb)=
| . do a*(@) b(p); * denotes complex conjugate.

It will be useful to rewrite Eqs. (4.16a), (4.16b) by introducing the real functions

Fe (@)=N, felo; k) (D.1)
Fo.(@)=N, fo(o; k) (D.2)
With the abbreviations

s=sin(mu/2), ¢ =cos(mu/2) (D.3}
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and the omission of ¢ arguments we can write’

¥, =expling)[cF., — isF,, ] (D.4a)
W =explipp) —isF, _+cF,_]. (D.4b)
(1) Calculation of (. |0, [ou> and {f_|dy _ [ou)

Both of these matrix elements vanish identically. To see this we calculate, e.g.,
Y, |0, /ou>. We have

oY, [ou=ipy , +expling)(n/2)[ — —icF,, ]
+expling)[c OF, , /éu—is 5Fo+/5#] (D.5)

the last line following since F,, and F,, depend on k£, which itself depends on pu.
Then, since F and 0F/0u have the same parity,

Yoy, fop> =iy Lo W > —(m/2)sc{Fe | Foy ) —<Foy [Fou D}
+ {?(Fe |0F, , [Ou) +5?CFo, |0F,, jop) ). (D.6)

A comparison of this expression with the explicit form of ¢{ |y, >/0u indicates
that we can write

ooy, foud =i oy, >+30<0, 1Y, /op (D.7)

Use of Eq. (D.4a) and the definite parities of the F, . causes the first term on the
right to vanish. The second term is identically zero since {y, |y > =1 for all .

(2) Calculation of (|, /ou) and (Y, |8y _ [oud>

Explicit calculation, following from Eq. (D.5), indicates that {y _|dy , /ou) is
purely imaginary, and so is (¥, |8y _/0u). Combining this information with
orthogonality of y_ and ¢, quickly yields the identity {y_|dy, /6ud =

Yooy [0,
The calculation of <y _|d¢y,/0u)> may be simplified if we determine
12y _ |0y, Jop)y + g |0y _/Op)). We find, with similar considerations to

those used in the calculation of (Y, |0y . /du>, that
Y 1oy, foud>=Y oy fopd =if2{({F, | @ |Fo, >+ (Fo | @ |F._>)
— /2L Fe_|Fey >+ <Fo | Foy))}

+(1/2) ——<¢ YD (D.8)

and the u derivative vanishes since (¥ _ |y . > =0 for all p.

It is tempting, but not obviously correct, to assume that F,(¢) and F,, () are normalised to
unity. We can only be certain that ¥, are an orthonormal set.
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The above equation is written in the form
W13y, jopy = <w+|a¢_/au>=i{—(n/2)fo dp(F._ = Fo_)Fe ~F,.)

+[ dolo~m/2)F. F,, +F°FH)}. (D9)
0

The first integral is straightforward since, on account of Egs. (D.1), (D.2), and
(4.11),

F.— F,=Nsinh[k(n/2—¢)] (D.10)
and leads to

e(k+ +k_)n/2

m +0(1)>. (D.11)

[ dp(F. —F, Fe. =F,,)=N,N_ (
0

To obtain the leading behaviour it is sufficient to evaluate N, and N_ with &
taken to zeroth order in I',. From Eq. (4.14) this is k=4 and a straightforward
calculation gives

N, N_=~x8ie 2 (D.12)

Using this and the values of £, taken from Eq.(4.14) gives
J"dq;(F\—F )F., —F,,)x2 “=T,. (D.13)
0

The second integral in Eq. (C.9) can be shown to be of order "3 and hence may
be neglected to leading order in I',. We thus have

Yoy, fou>= b, |09 _foud = —i(n/2)T, + O(T'3). (D.12)
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Note added in proof. The first-order homogeneous differential equation (6.2) with its delta-function
coefficient becomes unambiguous only when the delta-function is defined explicitly as the limit either of
a local or of a separable representation, since the solutions of the equation continue to depend on the
type of representation, even in the limit. Equation (6.3) is appropriate to local representations, dictated
by the physics of our system. Such ambiguities are discussed more generally elsewhere (G. Barton and
D. Waxman, “Wave equations with point-support potentials having dimensionless strength parameters,”
Sussex preprint, 1993).
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