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Abstract. The dynamics of quantum systems subject to dissipation is a subject of fundamental 
importance which has recently been of great interest due to its relation to macroscopic 
quantum phenomena. In particular the behaviour of the magnetic flux trapped in a SQUID is 
an example of this. 

We derive the quantum mechanical analogue of the Fokker-Planck equation which 
describes such systems. The major difference between the quantum and classical Fokker- 
Planck equations arises from the presence of a quantum mechanical memory term. 

Quantum Brownian motion is a subject which has been studied on account of its intrinsic 
and fundamental interest (Benguria and Kac 1981). Recently however, it has been of 
even greater interest due to its relation to macroscopic quantum phenomena. The 
example we have in mind is the behaviour of the magnetic flux trapped within a SQUID 
(Caldeira and Leggett 1983a) and this in fact provided the motivation for this work. 

In this paper we derive the quantum mechanical generalisation of the Fokker-Planck 
(FP) equation. There exists a previous attempt at this (Iche and Nozieres 1978) as well 
as high-temperature calculations relating to the FP equation (Caldeira and Leggett 
1983b) and the Langevin equation (Schmid 1982). 

We note here that the method we use to derive the quantum FP equation has an 
applicability much more general than the specific case considered. 

A system composed of a single degree of freedom (the 'particle') interacting with a 
collection of harmonic oscillators (the 'environment') has been used as a model of 
dissipation (Caldeira and Leggett 1983a,b). 

The Hamiltonian is$ 

It describes the particle (coordinate q )  moving in a potential V ( q )  and interacting linearly 
with the harmonic oscillators (c, being the coupling constants). 

Using influence functional theory (Feynman and Vernon 1963) and making the 
assumptions: (1) only after time t = 0 were the particle and environment interacting 
t Present and permanent address: School of Mathematical and Physical Sciences, University of Sussex, 
Brighton BN19QH, Sussex. UK. 
$ Note that we have explicitly included a counter-term in the Hamiltonian from the outset (Caldeira and 
Leggett 1983a). 
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(hence the density matrix factorised at t = 0); (2) the environment was, at t = 0, in 
thermal equilibrium at temperature T = h / k B t ,  Caldeira and Leggett (1983b) derived 
the time evolution equation for the reduced density matrix describing the particle alone: 

J J '  
91.0 4 2.0 

with 

as 

x exp - (i/h) 1' d u 1 '  du[q(u) - r ( u ) ] [ q ( u )  + ;(u)]Ql(u - U )  

0 0 

and 

(t = h / k , T ) .  
" d w  

We shall now present our own work. 
Firstly we derive the equation of motion that the propagator obeys. Let us note that 

the group property for J(qlq2tlq; q;O) cannot be used in this derivation since for general 
temperatures and spectral densities it does not possess this property: 

J (4  1 42 t14 i 4;  0) f j J (4  142 tis'; 4;  f 1 )J(qY 4;  f l  I4 i 4 ;  0) d 4;  d 4;  . (9) 

We begin with equation (5). Time integrations are split into two parts Jb- '  
and J:- E .  We quickly find that to order E 
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r r  \ 

In order to see the effects of varying the time period in the path integrals in equation (3) 
we consider the simpler object: 

9 B . I  

K ( q B  3 q A ;  t> = j d[ql exp(iS[q, t]/h)G[q; t1 (11) 
9 A . O  

with G an arbitrary functional of q. Utilising the definition of the path integral as a 
multiple integral (Feynman and Hibbs 1965) we can write equation (11) as ( E +  0,) 

we can write equation (12) as 

q B . r - E  

x j d[ql exp(iS[q, t - ~l /h)G[q ,  tl + W2>. (14) 
9 A  U 

Equation (14) generalises in a straightforward way to apply to equation (3). Using, 
therefore, equations (3). (10) and (14) we obtain to O(E)  

J(qiqztIqiqi0) - (iE/h)(q; + q i ) ( q i  - 42)Qi<t> - ( i E / h ) ( H 9 1  - Hq2)I 
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J 
q230 

J '  
q1.0 

x exp[i(S[q, t - E] - S [ r ,  t - ~]) /h]F[q ,  t ;  t - E] 

where we have used the notation H4 = - (h2/2m)(a2/aq2)  + V(q) .  
The time evolution for the propagator now follows from equation (15): 

a 
ihzJ(qlq2rlq;qiO) = (Hq l  - Hqz)J(q lq2t /q;q iO)  

+ ( 4 ;  + q i ) (q i  - q2>Q2<t)J(qiq2tlq;q;O) 

+ (ql - 42) Iot d u  Q I ( ~  - l""d[ql  lq2" d[rI[q(u) + 

x exp[i(S[q, t] - S [ r ,  tl)/hl F [ q .  r ;  r] 

- i(q1 - 42) lo' d u  Q,<t - 14"' d[ql/"" d[rl[q(u) - 4.11 

x exp[i(S[q, t] - S [ r .  tl)/hl kTq, r ;  tl. 

41.0 42.0 

41.0 9 2 . 0  

(16) 

Note that the boundary condition upon J is 

limJ(qlq*4?;q;O) 1'0 = 6 ( q ,  - 4;)6(q2 - 4 ; ) .  (17) 

Equation (16) holds for arbitrary spectral densities J(w) .  In order to achieve the 
classical Brownian motion limit (friction force = - qq)  it is sufficient to take. for low 
frequencies, J ( w )  = qw (Caldeira and Leggett 1983b). We take, for all frequencies 

J( w )  = qw exp (- w/o, ) .  (18) 
Here U, is a high-frequency cut-off of the environment-assumed to be much larger 
than typical frequencies of the classical motion. 

Let us note in passing that had we chosen]( w )  = w 3  exp( - w / w D )  with oD the Debye 
frequency, equation (16) would apply to tunnelling states in insulating glasses (Anderson 
et a1 1972, Phillips 1972). 

Equations (7) and (18) yield for Q l ( u )  

For Q2(u)  we write 

hence equation (8) gives 
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with 
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qw exp( -w/w,) coth 2 ut  

The last form for R(u)  is obtained by approximating [coth( 4 2 )  - I ]  exp( - w/w,) 
+ exp( - u/w,) by [coth( w / 2 )  - 11 + exp( - q'w,) and hence holds for w,,% 1. 

To obtain the quantum Fokker-Planck equation from equation (16) we use equation 
(2) to 'fold in' an initial density matrix. Additionally we use the delta function approxi- 
mation for Q,(u)  in equations (19) and (20) and the initial condition given by equation 
(17). We obtain: 

where p 1  = (h/i) (8/8q1),  and -qf(u) is a time-dependent forcing term added to the 
Hamiltonian which will be set to zero in the end of the functional differentiation in the 
last term. Equation (22) is the central result of this work. 

The last term in equation (22) can, in view of the external forcing term J b  du  q(u) f (u)  
in the action, be written as 

-i(ql - q 2 )  jOr duR( r  - U) j d y ;  ,/ dq; 191'r d[q] lq2" d [ r ] ( q ( u )  - r (u) )  
41 0 92.0 

exp[i(S[ql - S[rl)/hl F [ q ,  71 P ( 4 ; ,  4 ;  0) .  (23) 
This can be most easily interpreted by taking a Wigner transform of equation (22). 

The classical FP equation is obtained plus terms of order h2V"'(q) in addition a con- 
tribution from the term of equation (23). At finite temperature, R(u)  + 0 as h + 0. We 
can thus give this term the interpretation of being a quantum memory effect cor- 
responding to relatively long-ranged correlations in the environment. In comparison all 
classical memory effects are contained in the function Q,(u ) .  

Let us briefly comment on the temperature regime where a classical description is 
valid. The Wigner function obeys the Wigner transform of equation (22). This function 
will obey a classical FP equation if the quantum memory term is negligible+. An analysis 
of the range of R(u)  enables us to estimate that for weak damping it is necessary to be at 
temperatures T + hws/kB for this to be so (U, is a characteristic frequency of the classical 
motion). 

In a recent work by Chakravarty and Leggett (1984) on the spin-boson system a 
'dilute blip' approximation was used to obtain an exponential relaxation, in a certain 
regime of the parameter space, of a spin linearly coupled to a bosonic heat bath. 

'i We assume the h-corrections arising from the potential terms are negligible. 
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From our understanding such an approximation corresponds to neglecting the quantum 
memory effect between the blips. To see this let us go back to equation (20). We can 
interpret it as a decomposition of Q 2 ( u )  into classical and quantum parts. From equations 
(2)-(5) we see that the only place where the quantum memory comes in is in the last 
term of equation ( 5 ) .  It is clear that for a spin system q(u) and r (u)  take only two values, 
q0/2 or -qa/2. The last term of equation ( 5 ) ,  with the boundary condition q;  = q; = 
q1 = q2 = q0/2,  can be written as 

-U e x p - h x  174; ( ; ( t 2 ,  1 -f21-1)+-jr2L 1 d u ]  duR(u-U))  

‘21-1 f 2 , - 1  
1=1 17 

x exp - ( J f 2 ‘  d u  1‘” du R(u - u)CIC,)  
h i > l  

121-1 t2,-1 

where blips occur between each tZl and tzr - 1, Ci = ‘r 1. The comparison between equation 
(25) and equation ( 5 )  of Chakravarty and Leggett (1984) indicates that the dilute blip 
approximation corresponds to neglecting the exponent of the second factor of equation 
(25) which is the quantum memory between blips. The classical part of Qz(u)  gives rise 
to the term 

i 

which restricts the time scale of the blips to order t / a ,  CY = (qqi/2nh). The quantum 
correction to the self-energy, the exponent of the first term of equation ( 2 5 ) ,  comes from 
the term 

I]‘:’ d u i ’  duR(u  - U )  
r l .  

21-1 21-1  
‘ I  

which behaves as ln(o,t) if ( t2 ,  - t21-1)S t and ln(o,t) + 1n[(t2, - f21-l)/t] if 
(t2r - t 2 f - 1 ) 6 t .  Therefore, for all values of CY the self-energy is dominated by 
the classical part. In the dilute blip approximation, T/CY  is required to be much smaller 
than the decay time ts. Thus for CY< 1 the dilute blip approximation implies the 
classical limit?. For CY > 1, ts is found to be infinite (Chakravarty and Leggett 1984) 
and the condition for the classical limit is also satisfied. Of course, it is no surprise to 
see exponential decay in the classical limit. 

We conclude by noting that the quantum Fokker-Planck equation we have holds 
under general conditions of temperature. We hope to discuss further our Fokker-Planck 
formalism for the spin-boson model elsewhere in the near future. 
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t By classical limit we mean the effect of the environment instead of the system itself 
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