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Abstract In this paper, we introduce a novel computational paradigm based on
modern control and optimization theory and biological observations. We investigate
the ‘minimum-variance principle’ of a controlled dynamical system with noise,
assuming that the noise inherent to the control signal is sub-Poisson. In this case, we
find that the optimal solution of the stochastic controller is not an explicit function
but is composed of a parameterized measure. Moreover, in contrast to the supra-
Poisson or Poisson noise, this sort of parameterized measure can achieve precise
control performance even in the presence of noise.

1 Introduction

The purpose of this paper is to introduce a mathematical framework to realize
precise neural control in a noisy system. The initial motivation of the paper comes
from several biological observations. Noise is believed to be inevitable since it
is an intrinsic component of the signal and furthermore its magnitude could also
strongly depend on the signal magnitude [1]. However, as reported in [2], the
movement error is believed mainly due to inaccuracies of the neural-sensor system,
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and not associated with the neural-motor system, which implies that the neural-
motor system may be precisely controlled, even with randomness. A key feature
of the neural signal is that it is locally distributed and likely to have only three
states, namely inactive, excited, and inhibited. To make progress in understanding
how precise movement control can be achieved in a noisy environment, we shall
investigate theoretical relationships which may connect the observed activity of
neurons with precise control performance.

In a mathematical form, the neural control problem can be expressed as
minimizing the execution error caused by the noise inherent in the control signals
[3]. One characteristic of the noise is the dispersion index, ˛, which relates the
variance in the control signal to the mean control signal and hence describes the
statistical regularity of the control signal. When the variance in the control signal
is proportional to the 2˛-th power of the mean control signal the dispersion index
of the control noise is said to be ˛. It was shown in [1, 3] that an optimal solution
of analytic form can be found when the stochastic control signal is supra-Poisson,
i.e., when ˛ � 0:5. However, the resulting control is not precise and a non-zero
execution error arises.

In the present work, thanks to an elegant theory developed by Young (Young
measure) [4,5], we introduce some of mathematical principles linking the regularity
of the control signal noise and the precision of the resulting control performance.
We consider two examples of neural control: saccadic eye movement control and
straight-trajectory arm movement control, where neural spikes act as control signals,
which are formulated as Gaussian processes with signal dependent variances. Our
results show that if the control signal is less random than a Poisson process (i.e.,
˛ < 0:5) then the control optimization problem naturally involves solutions with
a specific character (parameterized measure optimal solutions), which can achieve
precise control.

2 Methods/Models

The purpose of our control task is to minimize the variance of the final ‘value’ of a
dynamical system under a constraint on its average activity. That is,
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varŒx.t/�dt;

subject to W dx
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D a.x.t/; t/ C b.x.t/; t/u.t/

x.0/ D x0I EŒx.t/� D z; t 2 ŒT; T C R�I
�i .t/ 2 Œ�MY ; MY �; t 2 Œ0; T C R�:

(1)

Here, var.�/ and E.�/ represent variance and expectation respectively, x.t/ is a
state vector while u.t/ D Œu1.t/; � � � ; um.t/�> is a controller vector, a.x; t/ denotes
the uncontrolled dynamical system and b.x; t/ is the gain matrix with respect
to u. Let ui .t/ D �i .t/ C �i .t/, where �i .t/ denotes the mean control signal
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and each �i .t/ is an independent white noise with the properties E.�i .t// D 0 and
E.�i .t/�j .t 0// D �i .t/�j .t 0/ı.t � t 0/ıij , while ı.�/ is a Dirac delta function and ıij

a Kronecker delta. The noise fluctuation �i .t/ explicitly depend on the magnitude
of the signal: �i D �i j�i.t/j˛ , with �i > 0, and ˛ is the dispersion index of the
control process. The aim of control is to let x.t/ reach a target z at time t D T and
stay there for the period ŒT; T C R�.

Due to limited space, we cannot provide any details in the present paper, but
give a summary of the main ideas. The mathematical contents can be found in our
other papers. The abstract Hamiltonian minimum (maximum) principle (AHMP) [6]
provides a necessary condition for the optimal solution, which is composed of the
points that minimize the integrand function of the Hamiltonian (IFH). This principle
indicates that the optimal solution should be a minimum of the given IFH for each t .
If the control noise is supra-Poisson or Poisson, i.e., ˛ � 0:5, then the IFH is convex
(or semi-convex), which implies that there is a unique minimum of the IFH for each
t . Hence the optimal solution is an explicit function, in the sense that for each t , �.t/

is the unique value that minimizes the IFH. If, however, the control signal is sub-
Poisson, i.e., ˛ < 0:5, then no explicit function �.t/ exists as the optimal solution,
since the IFH is not convex. However, an optimal solution that is not an explicit
function but a parameterized measure, f�t .�/g, exits. It is called ‘Young measure’
following [4, 5] and yields a set of values on which a measure (i.e., a weighting)
�t .�/ is defined for each t . And, the optimal solution of Young measure has the form
�t .�/ D �1;t .�/ � � � � �m;t .�/, with

�i;t .ds/ D Œ�i .t/ı.s � MY / C 	i .t/ı.s C MY /

C.1 � �i .t/ � 	i .t//ı.s/�ds (2)

with �i .t/ and 	i .t/ non-negative and �i .t/ C 	i .t/ � 1, �i .t/	i .t/ D 0. In
addition, we can derive that

min
�

s
Z T

0

varŒ
.x; t//�dt D O.1=.M
1=2�˛
Y //; (3)

as MY ! 1. This implies the execution error approaches zero as MY goes to
infinity if ˛ < 0:5. This is in clear contrast to the situation where the control signals
are Poisson or more random than Poisson (i.e., ˛ � 0:5) where the optimal control
signal is an ordinary function, not a parameterized measure, and the variance in
control performance cannot approach zero.

3 Results

We consider two examples of neural controls, where the control signal is described
as a Gaussian process: �.t/ C �.t/dWt =dt , with the noise depending on the
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frequency �.t/, that is �.t/ D �j�.t/j˛ for some ˛ > 0; � > 0. Then, the
underlying dynamical system can be formulated as Itô diffusion.

First, we consider the model (4) of saccadic eyeball movements, which was
studied in [7].

Rx D � 1

�1�2

x � �1 C �2

�1�2

Px C �

�

�.t/C�j�.t/j˛.t/dWt =dt

�

; x.0/ D 0; Px.0/ D 0:

(4)

Here x is the position of the eyeball, �; �1;2 are positive parameters of the oculomotor
plant, and �.t/ C �j�.t/j˛dWt=dt describes the control signal accompanying with
signal-dependent noise [1]. The control object is to let x.t/ reach a target D at time
t D T and stay there for a period Œt; T C R�. We revisit this problem via the idea of
Young measure. As shown in Fig. 1A(a–c) with ˛ D 0:25 (< 0:5), one can see that
the control signal is localized (Fig. 1A(b)) and the performance of control is precise
(Fig. 1A(b)), in comparison to the case ˛ > 0:5 which cannot achieve a precise
performance (Fig. 1A(c)).

Second, we consider a more complicated model of the arm movement related to
biological signal control. The sensorimotor transformations are often formalized in
terms of coordinate transformation. The nonlinearity arises from the geometry of
the joints. For simplicity, we neglect gravity and viscous forces, and formulate the
model as (5),
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;

C D k sin 2

" P2
P1 C P2
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#

; Qi D �i.t/ C �0j�i .t/j˛dW1=dt; (5)

where 1;2 are the angles between upper arm and horizontal direction, forearm and
upper arm, respectively, �1;2.t/ are control signals to two directions accompanying
with signal-dependent noises, and all other symbols (m1;2, I1;2, r1;2 and �0) are
constant parameters. The relation between the position of hand .x.t/; y.t// and
the angles 1;2 is 1 D arctan.y.t/=x.t// � arctan.l2 sin 2=.l1 C l2 cos 2// and
2 D arccosŒ.x2 Cy2 � l2

1 � l2
2 /=.2l1l2/�. For the details of the model, please refer to

[8]. We are to control the final hand position to reach the given target H D ŒH1; H2�.
We can use a numerical approach to calculate an approximate solution, as shown
in Fig. 1B(b). As it is shown in Fig. 1B(a), when ˛ < 0:5, the optimal localized
solution has a precise control performance, in comparison to the case ˛ > 0:5,
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Fig. 1 Optimal control and performance. The ODE is numerically solved by the Euler method
with a time step 0:01 ms. Panel A: Saccadic eye movement model with parameters �1 D 224 ms,
�2 D 13 ms, � D 1e � 2, � D 0:58, T D 50 ms, R D 50 ms, D D 10 degree and MY D 500.
(a) the dynamics of the position (in degree) under optimal control with ˛ D 0:25; the curves are
plotted with ten overlaps (blue lines) by randomly picked initial values, the red line represents the
mean over ten overlaps and the red circle is the pre-given position of the eye. (b) The localized
sampling distributions of the value MY which is picked by the Young measure �t .�/ with ten
overlaps (indicated by different colors). (c) the dynamics of the position (in degree) under the
optimal control with ˛ D 1; the curves are plotted with ten overlaps (blue lines) by randomly
picked initial values and the red line represents the mean over ten overlaps. Panel B: Straight-
trajectory arm movement model with parameters m1 D 2:28 kg, m2 D 1:31 kg, l1 D 0:305 m,
l2 D 0:254 m, I1 D 0:022 kg�m2 , I2 D 0:0077 kg�m2, r1 D 0:133 m, r2 D 0:109 m, T D 650 ms,
R D 10 ms, 
 D 3�=4 and MY = 20,000. (a) the movement of the arm in a platform under the
optimal control with ˛ D 0:25. The red dash circle represents error region over ten overlaps and
the gray line is the theoretical trajectory. (b) the local distribution of the optimal Young measure,
where x and y axes represent the �1;2 respectively, and the red points represent that �1;2 are picked
values at MY and otherwise in dark blue. (c) the movement of the arm in a platform under the
optimal control with ˛ D 1 and the red dash circle represents error region over ten overlaps

which possess a deterministic solution but an unprecise performance as shown in
Fig. 1B(c). The movement error also depends strongly on ˛ and MY . The error
decreases as MY increases and the logarithm of the standard deviation is linearly
dependent on the logarithm of MY with a slope very near ˛. This relation can be
described as Eq. (3) but is not shown in this paper.
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