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Abstract. The quantum tunnelling and coherence of aparticle moving in a biased or unbiased 
double well potential and subject to ohmic dissipation is considered. The complete time 
dependence of the reduced density matrix is determined for the case where the dimensionless 
friction constant CY e 1. 

There has recently been a great deal of interest in the effects of dissipation upon the 
dynamics of a quantum mechanical particle moving in a double well potential. This is on 
account of its relation to macroscopic quantum phenomena which are expected to be 
exhibited by the magnetic flux trapped within a SQUID (Caldeira and Leggett 1983a). 

In the case where the double well is symmetric (and hence unbiased) the associated 
phenomena are referred to as quantum coherence. These have been studied in 
thermodynamic (i.e. imaginary time) formulations (Chakravarty 1982, Bray and Moore 
1982) and in real time (Zwerger 1983a, b, Chakravarty and Leggett 1984). 

In the case where there is a small bias away from a symmetric double well potential, 
the decay from the upper well into the lower is referred to as quantum tunnelling. This 
has been studied in imaginary time (Weiss et a1 1985) and in both real and imaginary 
time (Fisher and Dorsey 1985) for the case of large damping (a > 1). 

Related work on this subject is on the nature of the heat bath (Chang and Chakravarty 
1985) and photoinduced tunnelling (Chakravarty and Kivelson 1983). 

The approach adopted in this work is distinct from previous approaches in that 
we consider the equation of motion that the reduceddensity matrix obeys. This is 
particularly advantageous in the physically interesting weak damping regime (a * 1) 
which previous approaches can reach only with difficulty. In this regime our approach 
can determine essentially all of the dymamics of the system (for both zero and finite 
temperatures) from the solution of a simple differential equation. Additionally the 
effects of non-zero bias are easily treated in this formalism and hence tunnelling and 
coherence may be considered simultaneously. 

Following most of the previous authors, we shall work in the two lowest-level 
subspace of the particle and model the dissipation by linear coupling to harmonic 
oscillators. We thus have a spin boson Hamiltonian 
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in which (q0/2)a, represents the coordinate of the particle and A corresponds to a tunnel 
matrix element between the two minima. 

All information on the environment necessary for a reduced description of the spin 
is contained in the spectral density (Caldeira and Leggett 1981) 

3r nz, 
J ( w )  = $- S(w - U,). , “ U ,  

The object we shall study in this Letter is the reduced density matrix. This is obtained 
by integrating out the environmental oscillators (Feynman and Vernon 1963) assuming 
the full density matrix factorised at time t = 0, corresponding to the environment in 
equilibrium at temperature T.  In a basis in which a, is diagonal we find a reduced density 
matrix at a time t (compare Caldeira and Leggett 1983b): 

The propagator J of equation (3) can be written as a double path integral over spin 
variables: 

J(ala2t~a3a40) = d[a] d[v]A[a]A*[v]l;la, v ]  (4) 
’a30 ’040 

in which a(u) and .(U) are spin ‘trajectories’ taking the values 2 1. a(u) goes from u3 at 
time 0 and reaches U ,  at time t etc. 

The variable a(u) changes sign (‘spin flips’) at times {t,} and 

1 d[a] = 1‘ dt, Irn dt,,-, . . . Iorz dt,. 
“ 0  0 

The sum is over all flips consistent with the boundary conditions. A[a] is the prob- 
ability amplitude for a given trajectory a(u) in the forward time direction and in the 
absence of the environment. Following and slightly generalising Chakravarty and Leg- 
gett (1984)’ we have 

The index n is the number of flips in a(u). 
The forward and backward trajectories in the path integral of equation (4) are 

coupled by the influence functional F [  a, v] (Feynman and Vernon 1963). This takes the 
form (see e.g. Caldeira and Leggett 1983b; with q(u) + (qo/2)a(u)) 

f lu ,  v] = exp[ -;(?)’I 1; dui: du[a(u) - v(u)][U(v) + v(u)]Q;(u - U) 

with 
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and 

t = h/kB T. 

We shall now use a similar procedure to that of Chang and Waxman (1985) and 

First we consider the factor $:$ d[u]A[a] in equation (4). We write 
derive the equation of motion that the propagator J obeys. 

and 

lof d u  a(u) = d u  a(u) + 6al + O(6'). lor-' 
Hence we can write 

iE6a 
d[a]A[a] = [l - 1) d[a]A[a] 

Note that the second term of this equation has an end point now of - u1 (not al) since 
equation (11) results in this term having one fewer integration and hence one flip less. 
A similar result holds for the backward time trajectory .(U). 

In order to find an analogous expansion for the influence functional of equation (7) 
we use the result for a general function of u and u;f(u, U): 

lor d U lou d U f(u, U) = lor- ' d u  j: d U f(u, U) + 6 Io'- ' d U f(t - 6, U) + O( 6'). (14) 

We apply this result to the two integrals in the exponent of the influence functional 
and expand the exponential to O(6). Combining the result obtained by this procedure 
with equation (13) and its counterpart for .(U), we are able to expand the right-hand 
side of equation (4) up to O(6). Dividing the resulting equation by 6 and taking the limit 
6 + 0, we obtain the equation of motion that the propagator obeys: 

ih - J (  u1 u2t I u3 a40) = - - [ J(  - ul a2t 1 u3 a40) - J( u1 - u2t I u3 a40j] 
a hA 
at 2 

hs 
+ - 2 ( 0 1  - o2)J(a1aztl 0 3 0 4 0 )  

2 

+ (9) (01 - 0 2 )  d~ Q ; ( t  - U M U )  + .(U)) 
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In equation (15) we have introduced the notation 

' 030 ' U40 

Equation (15) may profitably be compared with the corresponding equation for a 
coordinate degree of freedom (Chang and Waxman 1985). Equation (15) is a general 
result for a spin boson system of the type considered. We shall specialise to the case of 
ohmic dissipation (Caldeira and Leggett 1983a). In this case we take 

J ( o )  = qoexp(-w/w,) (17) 
where o, is a frequency large compared with A .  It is an excellent approximation to take 
Q l(u) to be a delta function: 

The dimensionless friction constant which determines the coupling of the environ- 
ment to the spin is 

(U = qq;/2nh. (19) 
For the physically interesting case of weak damping ((U 1) we make the approxi- 

mation of replacing (a(u) - v(u)) of equation (15) by its undamped ((U = 0) value, 
(a(u) - ~ ( u ) ) ~ .  It is straightforward to evaluate this quantity since 

( 4 u ) ) o  = ( 0 1  l ~ ~ P ~ - ~ ~ o ~ / ~ ~ ~ , ~ ~ ~ l ~ 3 ~ ~ ~ * l ~ ~ P ~ - ~ ~ o ~ / ~ ~ l ~ 4 ~ *  (20) 

a,(u) = exp(*ou/h)o, exp( -iHou/h) 

and H o  is the Hamiltonian of the spin alone. We find 

in which 

f1(s) = n,n,(l - cos(bs)) (23) 

f 2 ( s )  = -n, sin(bs) (24) 

f 3 ( s )  = n: + (1 - n:) cos(bs) (25) 

n = b/b  b = ( - A ,  0, E )  b = lbl. (26) 
Use of equation (22) in equation (15) results in a non-trivial simplification since we 

now have a differential equation for the propagator. Using equation (3), we can 'fold in' 
an initial density matrix and hence we obtain an equation of motion for the reduced 
density matrix. 

We denote by p the 2 X 2 matrix with elements p(ala2; t ) .  The polarisation vector a 
defined by 

p = &(l + a * a) (27) 
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satisfies a differential equation of motion obtained from that of the density matrix. We 
find the simple result 

aa -- - b x a + X I ? ~  - g Z  x (+(t) x a)  
a t  

in which? 

and I ? x ,  e, are unit vectors along the X, 2 axes respectively. 
Equation (28) is the central result of this work. We emphasise that it holds for weak 

damping, a < 1. 
Let us make some comments on equation (28). Firstly for times large compared with 

t the functions vj(t) become essentially independent of time+. Here we shall ignore this 
transient behaviour and concentrate on longer-time properties. Secondly the equation 
exhibits irreversibility (damped oscillatory solutions in general) such that the solutions 
obtained by taking the limit f+ CQ are, for a-+ 0, thermal equilibrium results. 

To make the connection with the work on coherence we consider equation (28) for 
the asymmetry parameter E = 0. We find for al(t)  the damped equation of motion 

U ,  + A2(1 - 3 2 / A ) ~ ,  = v3Uz. 

A, = A(1 - ~ . J ~ / A ) ~ / ~  = Aexp(-v2/2A). 

(32) 

(33) 

This corresponds to the particle tunnelling at renormalised frequency 

We find 

v2  = -2aA ln(clhA/hwc) ( k ~  T < hA) 

= -2aA ln(~2kB T/hwc)  ( k ~  T h a )  (34) 
with c1 and c2 constants of order unity which are dependent on the precise way the 
spectral density cuts off at high frequencies. The inverse damping time -v3 can be 
written down in closed form 

- 33 = ICaA coth(hA/2k~ T )  (35) 

Q = (l /na) tanh(hA/ak~T). (36) 

and for small awe obtain the temperature-dependent Q factor of the damped oscillations 

t Strictly xis independent of time f only if w,t a 1. 
f The dependence of Won time t may, for very low temperatures, result in significant deviations from damped 
oscillatory behaviour. I thank A J Leggett for informing me of his and his co-workers' results, which alerted 
me to this. I also thank him for bringing to my attention the related work of Harris and Silbey (1983). 



L426 Letter to the Editor 

Thezero-temperature resultsofequations(32), (34), (35) and(36) closelycorrespond 
to results found by Chakravarty and Leggett (1984) in the small-a limit. 

For the case of tunnelling, we shall simply state the result we find, namely that for 
small a we have essentially exponential decay into the thermal equilibrium configuration 
at a rate (to lowest order in a) given by 

r=-  naA2 c o t h ( K T )  he ( E  + A).  e (37) 

There obviously exist a rich set of phenomena associated with the central result of 
this work, equation (28). We plan to discuss some of these in the near future. 

It is a pleasure to acknowledge discussions with Jim Barber, Sudip Chakravarty, Steve 
Kivelson and most particularly Lit-Deh Chang. I thank Herman Grabert, M Fisher and 
A Dorsey for preprints of their work and I thank Gabriel Barton for a helpful discussion. 
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