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Abstract

In this paper we study a large, but finite population, in which mutation and selection occur at a single genetic locus in a
diploid organism. We provide theoretical results for the equilibrium allele frequencies, their variances and covariances and their
equilibrium distribution, when the population size is larger than the reciprocal of the mean allelic mutation rate. We are also able
to infer that the equilibrium distribution of allele frequencies takes the form of a constrained multivariate Gaussian distribution.
Our results provide a rapid way of obtaining useful information in the case of complex mutation and selection schemes when the
population size is large. We present numerical simulations to test the applicability of our theoretical formulations. The results
of these simulations are in very reasonable agreement with the theoretical predictions.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction ations that are either difficult to approach with purely
analytic methods or are highly time-consuming when
Biological evolution depends on changes in allele simulated on a computer. The results found can, in
frequencies and these changes can occur because ogparticular, provide useful information in the case of a
various evolutionary “forces” that include selection, complex selection scheme where the population is too
mutation, and genetic drift. Understanding how these large to allow a complete study using only computer
evolutionary forces combine to produce distributions simulations.
of allele frequencies is, generally, a complex task.  The primary restrictions on the applicability of our
Most progress has been made in the case of infinite approach are that the number of alleles is finite, hence
populations(Crow and Kimura, 1970Q)however, for continuum of alleles models are not included, and that
the more realistic case of finite populations, there has the reciprocal of the population size is small compared
been less progress. with the mean mutation rate. We clarify the origin of
In this paper we focus on the case a finite pop- this restriction inSection 6.1
ulation in which mutation and selection occur at  The genetic locus under consideration hgsossi-
a single genetic locus in a diploid organism with ble alleles and we describe these by the column vector
non-overlapping generations. Our main objective is p(f) = (p1(1), p2(t), ..., p.(1))7 (where T denotes
to provide results that can help in the analysis of situ- transpose), and thigh element ofp(¢) is the frequency
of allelei at generation (i.e., timeg)(=0, 1,2, 3...).
"+ Corresponding author, Tel44-1273-6788-43. At the time of census, population size is fixedMt
E-mail address:J.R.Peck@sussex.ac.uk (J.R. Peck). Thus the frequency of any allele can only be one of
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the values given by

Allowed allele frequencies
0 1 2 3 2N
" 2N’ 2N’ 2N’ 2N’ 2N’

and there are a total o+ 1 possible values for each
element ofp(¢). Because a value g(z) is simply a
specification of the value of each of theelements of
p(0), there exists a finite number of possible values of
p(0). This number would have the val@an + 1)" if

the elements op(r) were independent, however, they
are constrained to sum to unity. This results in the
number of possible values gf(r) being generally a
much smaller number and given by

)

)

(2N +n — 1)
@N)(n — D!’

In general, evolutionary biologists are most inter-
ested in the long-term outcome of evolution. There-
fore, we will concentrate on characterisingr) for
large values of. The analysis we present applies for
the class of models where the value pff), in an
infinite population, approachesumique equilibrium
value at long times.

We shall focus on the calculation of the mean and
variance of the various allele frequencies, along with
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of heterozygosity, the mean fitness and also the loss
of fithess due to genetic drift (the drift load). An ad-
vantage of our work is that dependence on population
size,N, is explicitly present in the results, so compar-
ing results for different population sizes requires no
additional calculation.

Previous theoretical studies of mutation and selec-
tion in finite populations have generally assumed a
particular pattern of fitnesses and mutations. Summary
statistics, such as mean fitness, genetic variance and
the level of heterozygosity, have been found by com-
puter simulations and analytic approximations. Our
work allows for calculation of these quantities and can
readily deal with general schemes of mutation and se-
lection in a single framework.

We begin the presentation of the analysis with a
study of the infinite-population case. This is, essen-
tially, a re-formulation of previous workCrow and
Kimura, 1970) We then use the results from the
infinite-population case as the basis for investigating
the case of finite-populations.

2. The model

Consider a diploid organism in which generations
are discrete. During each generation, the population

the covariances, over time, between allele frequencies.undergoes four phases:

Our calculations hold for the long term, once no sys-

tematic trends are exhibited by the population and only
the effects of genetic drift are present. We shall loosely

refer to this state of the population as “equilibrium” but

emphasise that there may be considerable stochastic-

ity present. Once this equilibrium regime is achieved,
we can interpret the results of calculations that involve
genetic drift in two different ways, both of which are

valid. The first way views the results for summary

statistics as being derived from an average, over a large

number of replicate populations that differ from each
other due to their different stochastic histories. The
second way takes the view that there sirsglepopu-

lation and the distributions or summary statistics aris-

ing from the calculations describe a time average over

this single population. In this work we shall generally
adopt the single population viewpoint.

As we shall see, the quantities we calculate allow

the determination of evolutionarily important quanti-

1. The adults mate at random to produce zygotes.
These mature into juveniles. We assume that a very
large (effectively infinite) number of zygotes are
produced. The expected number of zygotes pro-
duced is the same for every adult (thus, there is no
fertility selection).

2. All of the adults die, leaving only the juveniles
alive.

3. Viability selection occurs. The probability that a
particular juvenile will survive viability selection
depends only on their genotype.

4. We assume that the resources present in the envi-
ronment are only sufficient to suppoM adults,
thus, a non-selective thinning process occurs,
where N juveniles are selected at random. These
juveniles become the adults of the next generation,
while the remainder die.

The n possible alleles at the one locus under se-

ties that include the level of genetic variance, the level lection are numbered, 2, ..., n and thei'th allele is
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denoted byA;. An individual who inheritedA; from
one parent andi; from the other will be referred to
as an individual of typ€i, j). The probability that a
juvenile of type(i, j) will survive viability selection
is given by Wjj = Wji. Note that we do not assume
any relation betwee#;i, Wi and Wj;, thus, no partic-
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infinite population limit, the values of the equilibrium
allelic frequencies are known with certainty and have
no fluctuations about their values.

We have assumed models which, wh&n— oo,
the long time limit of p, i.e., p(c0), always achieves
the same value, namepy(oco) = A, corresponding to

ular dominance relation is assumed between any pairthe existence of a unique equilibrium. While this is

of alleles.
It is convenient to be able to work in termsrefa-

the relevant case in many situations, it is possible to
choose the values gfjj andwj; such that there may

tivefitnesses, rather than absolute fithesses. Therefore be multiple equilibria possible. Other possibilities are

we define theelative fitnessof type (i, j) juveniles,
denotedwjj, as:

)

Thus, type(n, n) individuals are arbitrarily chosen as

that allele frequencies may exhibit chaotic or other
complex behaviours. In this paper, we will not consider
models with these properties although we shall briefly
comment on multiple equilibria iSection 5.1

In special cases it is possible to write analytic ex-
pressions for the equilibrium allele frequencids,in

the reference genotype, and have a relative fitness ofterms of the values ofj; andwjj and there is a large

unity. It is also convenient to define the selection co-
efficient associated with genotypge j) by

sij = wjj — L

®)

literature on this topic, starting in the early days of the-
oretical population geneti¢gelsenstein, 1981How-
ever, we are not aware of any general expressions for
A. Nevertheless, it is straightforward to numerically

Finally we assume that mutations occur during the calculateA to a high degree of accuracy. One sim-
production of gametes. If a particular gamete contains ply specifies an initial set of frequencieg(0), and

a copy of parental allelg, then the probability that
this allele underwent a mutation to allglés .

We shall analyse the above model when the recip-

rocal of the population sizey 1, is a small quantity
in the model and allows an expansionNiTL. In par-
ticular, this meansv— should be much smaller than
the mean mutation rate.

$2i(p) =

pi [Z,- Wi pj — Xk wjkpjpk] + D iklrijwikpjpx — wjiwikpi pil

iterates, to convergence, the equation that determines
the gene frequencies in subsequent generations. This
equation is

pit+1) =pl+ L(pQ), 4)

where 2(p) is ann component column vector with
elements

3. Theinfinite population limit

To begin the analysis, we consider the limit as
population size,N, goes to infinity. In this case
the allowed allele frequencies, given (f), become
continuous. The equilibrium of the population is de-
scribed by the vectod = (A1, Ao, ..., A,)T and
this is assumed to benique Thus, many genera-
tions after an arbitrary starting point, the frequency
of allele A; (i = 1, 2, ..., n) has a value given by the
i'th component ofA, namelyA;. Furthermore, in the

w(p) ©)

and

D(p) = ) Wikp;Pk- (6)
ik

4. Finite populations

What is the outcome of evolution when the popula-
tion is finite in size? No general answer to this ques-
tion exists, however, a great deal can be said if we
restrict ourselves to the situation where the popula-
tion size, N, is sufficiently large that the allele fre-
quencies of1) can be treated as continuous variables
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lying in the interval [Q 1]. In this case, we can incor-
porate the most important effects of finite population
size by adding the random genetic drift tefi) =
(E1(0), E2(1), ..., £,())T on the right hand side d#):

p(t+1) = p@ + L(p®) + §0). ()

With E denoting the expectation operator afad the
Kronecker deltad;,; = 1 if i = j and is zero other-
wise), theg; (r)’'s satisfy the standard conditional ex-
pectations

E[&@® pc(D|p(] =0
pi(t1)d;j — pi(t1) pj(t2)
2N ’

E[&(0|p(] =0,
E[£(tD)&j(12) | p(D] = 8111,

(8)

where the last result follows from a multinomial
distribution.

The fundamental quantities we are interested in
are the equilibrium allele frequencies along with their

variances and the covariances between different allele

frequencies. We can u¢é) and (8)to derive approxi-
mate equation for these quantities whens suitably
large.

We note thaBarlett (1978)has presented calcula-
tions for the leading effects of finite population size
on a one locus, two allele model. His work exploits
the fact, as does this work, that-1 may be used as
an expansion parameter in the calculations.

4.1. Equations that determine the mean allele
frequencies and their variances and covariances

To determine the approximate means, variances and

covariances, we first take the unconditional expecta-
tion of (7). In equilibrium (wherer arguments are
omitted) we obtain

E[2i(p)] = 0. (9)

Denoting the mean value ¢f in equilibrium by p:
E[pl=p (10)

We subtractp from (7) yielding p;(t + 1) — p;
pi() — pi+2;(p(t)) +&;(¢). We combine this equation
with the corresponding equation wherés replaced
by j by multiplying thei and j equations together and
take expectation values to obtain
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E[(pi(t+1) — p)(pj(t+1) — pj)]
= E[(pi(®) — pi)(p;(®) — pj)]
+E[(pi(t) — pi)$2;(p(1))]
+E[Q2i(p®)(pj(®) — pj] + E[&DE;(1)].

11)
In equilibrium this reduces to
E[(pi — p)2;(p) + 2i(p)(pj — p)j)]
= —E[5(0&;D]. (12)

Using (9) and (10) we can write(12) as
E[(pi — pi)(2;(p) — £2j(P))
+(82i(p) — 2i(p))(pj — Pp] = —E[&(D)§;(D].
(13)

Egs. (9) and (13are, as they stand within our model,
exact. Let us now use them to obtain approximations
for the allele frequency means along with their vari-
ances and covariances.

4.2. Approximation

In order to derive useful approximations, we must
make certain plausible assumptions (assumptions 1-3
below). We will test the accuracy of these assumptions
shortly. Note that assumptions 1-3 are consistent with
Egs. (9) and (13)in the limit of very largeN.

The assumptions are:

1. The mean allele frequencieg, consist ofA (the
N = oo deterministic equilibrium result) plus a
correction whose leading term is of ord&r L.
2. The variances and covariances of the various allele
freqluencies,E[(pl- — pi)(pj — pj)] are of order
N~
3. Higher order correlations such A§(p; — p;) (p; —
Pj)(pr — pi)] are of orderN—2 or higher order in

N~L

We determinep and E[(p; — p;)(p; — pj)] up to
and including terms of ordeW 1. To proceed, let us
introduce the quantitie8; and Cj; which are defined

via
B; 1
Bpl=pi= At +0 (). (14
Cijj 1
E[(pi — pi)(pj — pp] = WU +0 (ﬁ) , (15)
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thus, B is ann component column vector ar@is an
n X n matrix and both are independent &t

It is natural to first determin€j; and we do this by
expanding2(p) in (13) aboutp = p to first order in

(p— p)- Thus,E[(p; — pi)(£2;(p) — £2;(p))] in (13)
yields
E[(pi — p)(2(p) — $2;(p))]

=Y El(pi — p)(px — P0)]
k
L 02,(p)

1
1o <—)
8pk p=p N2

Cik 082;(p) ( 1 >
=y Tk AP o). 16
Z apk p=A - N? ( )

the last equality following from the assumption of

(14), that p is, to leading order inV—1, equal toA.

Additionally, the expectation on the right-hand-side of

(13) yields
E(pisij — pipj)
2N
_ Pi%i — pipj — E[(pi — pi)(pj — Pl
2N
AiSij — A,'Aj 2
=2 N79). 17
oN + O( ) (17)

(The last equality usingl4) and (15). Thus, the in-
troduction of N independent matrices and A given

by

defA (Su AiAj _2
=———— + 0N, 18
ij = SN + O( ) (18)
and
def 082
= — ) , 19)
3Pk p=A

(16) leads to the matrix equation that determiries
AC+CAT =TI (20)

OnceC is known, we can determing by similarly
expanding the left-hand-side () to secondorder in
p — p. This yields the equation

352;(p) 1« 2:(p)
) it3 Xk:
Js

P lp=a PPk | p=s

4.3. Calculation of B and C

Here we give grescriptionby which B andC can
be calculated. The rationale underlying this is given
in Appendix A

With A assumed known from numerical or
analytic methods, explicit calculations require
the form of Aj = -02;(p)/dpjlp=a and also
Bzfzj(p)/apkapl|p=A. For completeness, we state the
results in the case of frequency-independent selection:

Ajk = - w(A) { ik (Z er —w(A) — ;Mrj wrsAs>
+A4; (wjk - ZZ Wir A, — Z W wjk)

+ Z Mir Apwik + Wik Z wkrAr} , (22)
9%82;(p)
= —— {24, A+ 24,
9, Ips o (A is Z Wyj + ir Z WSJ

+dis (wir - ZZ wy A — Z Hji wir)
J J
+ i, (wis -2 Z wsiAj — Z Mii wis)
J J
+ Wir Wrs + UisWrs — 2Aiwrs} . (23)

The solutions forB and C are written in terms of
Y; and XiT, which are the right and left eigenvectors
of the matrix A associated with eigenvalug, i =
1,2,...,n. These are selected to obey

AV =0, A=), xvi=68i.  (24)
Then the matrixC can be written as
Vi X;I-FX]‘#T
C= . 25
Z vy (25)

For the vectorB it is simpler to write out the com-
ponents rather than give an expression for the entire
vector. Thei'th component ofB is given by

1< 382,
Bi=> Y (A7 TLW ¢, (26)
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With these expressions, we have, Yial) and (15)

the means and variances or covariances of allele fre-

quencies to ordeN 1.

5. Expressions for some biologically relevant
guantities

Various quantities of biological interest may be
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variances and covariances, that are of omer. In

the limit N — oo, @(p) in (27) collapses taS(p —

A), which corresponds to a distribution with sharply
defined allele frequencies given by the components
of A.

It seems very plausible that in the event of multiple,
well-separated, equilbridq. (27)describes a popu-
lation that is trapped in the vicinity of the particular
equilibrium located ap = p. One can also envisage

expressed in terms of the mean allele frequencies a population that makes drift induced transitions be-

and their covariances. Usin(l4) and (15), these
may, if desired, be expressed in terms Bfand
C.

5.1. Probability distribution

Perhaps the most fundamental quantity we can
approximately determine is the stationary probabil-
ity density, @(p), which has the interpretation that
®(p)dpidp,...dp, is the probability thatp; lies
in the range(p1, p1 + dp1), p2 lies in the range
(p2, p2 +dp2).... It can be shown that the follow-
ing distribution yields mean allele frequencies and
covariances that are, to ordaf!, identical to the
results(14) and (15)

®(p) = Z8(F ' p—1)
N
xexp[—;(p - - p)] - @

In (27), Z is a constant that ensures the inte-
gral of @(p) over all allele frequencies is unity,
[ dpidp2...dp,®(p) = 1, as is required of a prob-
ability density. The quantitys(®) denotes a Dirac
delta function (which satisfief™_ 8(x — a)g(x)dx =
g(a) for g(x) an arbitrary function). The quantity
F is ann component column vector with all ele-
ments equal to 1:F (1,1,1,..)7" and [c]?
denotes theseudo-inversef the matrixC. We note
that from Eq. (15) C contains all information, to
O(N~1), about all variances and covariances of allele
frequencies.

The form of(27) can be understood as follows. The
factor § (FTp—1) = §(>1; pi — 1) ensures that
@(p) is only non-zero at frequencies that sum to unity.
The remaining factor is a multivariate Gaussian corre-
sponding to a mean lying gt = p, and the Gaussian

is characterised by fluctuations about the mean, i.e.,

tweennearbyequlibria, or other movement between
equilibria, however, the analysis of these lies well be-
yond the present work.

5.2. Mean heterozygosity

The mean heterozygosity is the average proportion
of individuals that are heterozygous. A particular pop-
ulation, with allele frequencies given by the elements
of p, has the fraction of heterozygotic individuals
given by >, jizj pirj = 1= 3 pi=1-pp
Time averaging this quantity yields the expected mean
heterozygosityH:

_r_ ¢
H=E1l-p'pl=1-p"p+ %
B Tr[C]
=1-ATA+2AT— + 2 28
+ N + N (28)
whereTr[C] = ), Cii.
5.3. Genetic variance
Let the column vectorx = (x1,x2,...,x7)"

contain the effects of the different alleles. The
variance of allelic effects of a population whose
allele frequencies arep, at a particular time, is

2 [Zi pix? — (3 pix,')z]. Theexpectedjenetic vari-
ance is the time average of this quantity:

V, =2E Zpixiz — Zp,-pjx,-xj
i ij

> (pibj + Cij/N)xix;

i,

=2|) pixf—
i
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=2 ZAixiz - ZAiijixj
i ij

1
+N Z Bixl-2—2 Z BiBjxixj-i— Z Cijxin
i ij ij
(29)
5.4. Drift load

The drift load is the fraction of the population

that die each generation due to genetic drift causing f(x)=
some individuals to have a fitness that is less than

the optimum. Withw(p) defined in(6), E[w(p)] is

the expected (i.e., time averaged) mean fitness of the

population in equilibrium. Furthermore, in an infinite
equilibrium population, the allelic frequencies are
precisely given byA (with no deviations about this
value), thusw(A) is the mean equilibrium fitness of
an infinite population. Therefore, the expected drift
load is given by

w(4) — E[w(p)]

Lritt = 30
drift w(A) ( )
Using (14) and (15we find
_ - - Ci
W = ijk (p,pk + 7)
Jik
AiBy 4+ BiAx + Cj
=ijk<AjAk+ ik ik Jk),
- N
J.k
hence
1 (=2 wkRA;Br + Ci)
Laritt = — = : ! : (31)

6. Comparison with results for two alleles

Having derived estimates for the mean allele
frequencies and their covariances from a large
N approximation of diffusion analysis, we now
compare these with a diffusion analysis results
for the case of two alleles. This serves to make
clear the domain of validity of our approximate
results.

21
Following Ewens (1969)ve use the notation

H21=1U, [H12="V

wir=1+s1, wi2=1+s2, wop=1, (32)

with s1, s2, u, v < 1 but no particular relation between
s1, 1 ands», so allelic effects are, in general, neither
additive nor multiplicative. Then diffusion analysis,
(Ewens, 1969)gives f(x)dx as the probability that the
frequency of alleleA; will lie in the range(x, x + dx),
where

xNe=1(1 — x)N-lexp[ANSx+2N(s1—255)x?]
Jo dy yML(1—y) Mo exp[ANS,y+2N (51— 252)y?]
(33)

The mean frequency of allel¢; is thus given, in the
diffusion approximation, by

1
p1= / dx xf(x), (34)
0

and the mean frequency of allefe is po = 1 — p;.
The covariance of the frequencies4f and As is, in
the diffusion approximation,

cov(pa, p2) = E(p1— p1, p2 — p2)

1
_ /O drx(1— %) f00) — pr(l— p)
1
- (/ dx x2 f(x) — pi) .
0

6.1. Selectively neutral case

(35)

In the case where both ands, are zero,p; and
cov(p1, p2), as given by(34) and (35)may be eval-
uated in closed form. This yields the following ex-
pressions, which are the results of standard diffusion
analysis:

v
u-+v
cov(p1, p2) = —

p1=
L uv
AN (v + u)2(v + u + (1/4N))

(36)

If we specialise the results given for the calculations
of BandC in (25) and (26)o then = 2 case, we ob-
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Table 1

A set of results comparing the standard diffusion results and the Isrg@proximate results of this work, for the case of a locus with

two alleles

N 51 52 u v Diffusion Large N Diffusion result Large N approximate
result for py approximate forp, for cov(pi, p2) for cov(pi, p2)

10 0.000 0.000 0.00040 0.00080 0.6667 0.6667 0.0045 0.0046

10  0.001 0.000 0.00040 0.00080 0.7759 0.7757 0.0030 0.0030

10  0.001 0.002 0.00040 0.00080 0.6683 0.6683 0.0030 0.0030

10°  0.001 0.002 0.00004 0.00008 0.6676 0.6676 0.0007 0.0007

10° 0.010 -0.010 0.00004 0.00008 0.9980 0.9980 %3077 3x 1077

tain, after some work, the results of largeanalysis

of this work.
v

u-+v
cov(p1, p2) = —

p1=
v (37)
AN (v +u)3

A comparison of cogps, p2) from (36) and (37)in-

dicates that the two results are approximately equal

only if N~ « 4(u + v). This appears to be the
typical limitation of our approach and we shall con-
servatively take this to mean that—! must be much
smaller than the mean allelic mutation rate. This is not
a strict criterion. If we consider the two allele case,
it is evident that the probability density will only be
similar to a Gaussian (i.e., will be a unimodal distri-
bution) when the factor®\?=1(1 — x)*Nu-1 in (33)
doesnot result in sharp peaks at= 0 andx = 1,
corresponding to quasi-fixation of alleles in the vicin-
ity of their boundary-value frequencies. A unimodal
distribution will be obtained whenMv — 1 > 0 and
4Nu — 1 > 0. We infer that the largeV results of
the present work are applicable when, apart from
N being sufficiently large, the pattern of mutation
probabilities, wijj, is such that the population can-
not get irreversibly “trapped” at some alleles. To

small to allow the use of diffusion results. We find
that whenN ! is reasonably smaller than the allelic
mutations rates, the agreement is extremely good, as
Table lillustrates.

7. Standardised selection/mutation scheme

As a further application of our results, we consider
a single set of mutation rates and two different choices
for the fithesses. We refer to these $taindard Sets
1 and 2 and compare the results withmerical sim-
ulations We take, for both Standard Sets 1 and 2, a
population size of 2000 with 10 alleles segregating at
the locus in question, thus

7.1. Results for Standard Set 1

Mutation rates and fitness@sig andwstg are given
in Appendix B The maximum mutation rates were
of chosen to be of order 18. This very large value
was chosen to speed up the approach to equilibrium
of the numerical simulations. The fitnesses of Stan-

make stronger theoretical statements concerning thisdard Set 1 correspond to relatively small selection

seems to be formidably difficult. Let us therefore

discuss the numerical work and simulations we have

performed.
6.2. More general two allele case

We have carried out numerical comparisons of the
predictions of diffusion analysis given (84) and (35)
and the results of this work summarised(2b) and
(26). We have restricted selection coefficients to be

coefficients.

We present the results of the approximation of this
work (“large N approximation”) and numerical sim-
ulations of the life-cycle of the one-locus randomly
mating diploid organism considered in this work for
the standard set of fitnesses and mutation rates.

7.1.1. Mean allele frequencies
Using(14) and (26)the approximation of this work
yields, for the mean allele frequencies,
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p =101 x (0.810, 1.182 1.244, 0.902, 1.026, 1.099, 1.124, 0.804, 0.690, 1118, (39)

Result of largeV approximation

while the numerical simulations produced
p=10"1 x (0.810,1.182 1.244 0.902 1.025, 1.099 1.126 0.804 0.691, 1.119 " . (40)

Result of numerical simulation

7.1.2. Covariances
From (15) and (25) the matrix of covariances is given b§/N where C is a symmetric matrix, whose

independent elements are

3.604

—1.181 7694

—0.013 —-2.846 7099

—-0.127 -0.884 —-0.149 3187

—0.220 -0.842 —-0.227 —-0.533 5405

—0.798 —-0.489 —-1.007 —-0.480 —-1.038 5129

—-0.501 -0.738 —0.719 —-0.353 —-1.052 —-0.445 4679

—0.139 -0.146 -0.611 -0.254 -0.354 -0.366 —0.511 3168

—-0.328 Q105 -1.014 Q083 —-0.370 —-0.340 -0.016 —-0.234 2585
—-0.299 -0.673 —-0.514 —-0.490 -0.769 -0.166 —-0.343 -—-0.552 -0471 4277

C=10"1x

Result of largeV approximation

(41)
The quantity thatC can be directly compared with from the numerical simulations is

N x matrix of covariances

3.672

—-1.213 7674

—0.008 —-2.811 7.346

—0.145 -0.809 -0.270 3328

—0.243 -0.901 -0.173 -0.556 K562

—-0.767 —-0.540 —-1.166 —-0.425 -1.018 5210

—-0.551 -0.777 —-0.695 —-0.399 -1.109 -0.379 4818

-0.137 -0.012 -0.591 -0.267 -0.358 -0.373 —-0.530 3176

—0.295 Q047 —-1.082 Q086 —-0.390 —-0.332 -0.0032 -0.239 2618
—0.313 —-0.658 —0.550 —-0.545 -0.813 -0.211 -0.345 —-0.668 —0.382 4484

Result of numerical simulation

(42)

7.1.3. Comparison
There is very good agreement betwg@0) and (40) This is not surprising since the result is primarily the

N = oo result,
A =101 x (0.809 1.183 1.241 0.901 1.026, 1.099, 1.126, 0.806, 0.691 1.119". (43)
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We have previously expressgdsA plus anO(N 1) It should be noted that onck is known, the results
correction term,(14). However, for the population  Of this work for p and covp;, p;) were calculated, for
sizes considered, the(N—1) correction term is hard ~ any N, w and u on a standard PC in seconds, while
to extract and compare with theory because statis- the numerical simulation results took an appreciable
tical errors in p cannot be disentangled from this amount of computer time.
term.

By contrast, the leading term in the covariances 7.2. Results for Standard Set 2
is not O(N?) but the O(N~1) term C/N and conse-
quently this term is far more readily observable than Mutation rates for this set were identical to those of
the O(N—1) terms inp. We have presented in (41) Standard Set 1. The fithesaegq for this set are given
and N x (the matrix of covariances from the simula- in Appendix Gand correspond to quite large selection
tions) in (42). There is a reasonably good agreement coefficients.
between the approximation of this work and the result
of the simulations, thereby suggesting that the covari- 7.2.1. Mean allele frequencies

ances do scale ag~1 for large N when selection is Using(14) and (26)the approximation of this work
weak. yields, for the mean allele frequencies,
P= 101 x (0.060, 6.468 0.046,0.100, 0.110, 2.056, 0.268 0.506,0.173 0.213)T . (44)

Result of largeV approximation
while the numerical simulations produced

p = 1071 x (0.060, 6.468 0.046,0.100, 0.110, 2.057, 0.268, 0.505, 0.172 0.213 " . (45)

Result of numerical simulation

7.1.4. Covariances
From (15) and (25) the matrix of covariances is given b§/N where C is a symmetric matrix, whose
independent elements are

0.021

0.012 8226

0.000 —-0.132 Q0253

0.000 -0.103 Q002 Qo047

0.002 0238 -0.004 —0.004 0216

—0.040 —7.906 Q118 0066 —0.487 9288

0.000 -0.232 0001 -0.001 —0.010 —0.025 Q273

0.006 0166 -0.011 —0.007 Q059 -1.104 —-0.010 Q948

0.000 —0.059 Q000 Q001 Q000 -—-0.029 Q002 —-0.011 Q099
0.000 -0.210 Q003 Q001 -0.010 Q119 Q001 -0.036 —0.003 Q136

Cc=10"1x

Result of largeV approximation

(46)
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The quantity thaC can be directly compared with from the numerical simulations is

N x matrix of covariances
0.033

0.007 8736

—0.001 —-0.136 0034

—0.001 -0.109 Q001 Q064

0.003 0237 -—-0.005 —0.003 0254

=101x
—0.046 —8.183 Q116 Q055 -0.521 9629
—0.002 —-0.268 Q002 Q000 -0.013 —-0.027 Q321
0.007 Q037 -0.013 -0.008 0066 —1.110 —-0.014 1083
0.000 -0.066 Q000 QOO0 -0.004 —0.046 —0.001 —-0.010 Q129
0.000 -0.256 Q002 QOO0 -0.013 Q132 Q002 -0.038 —0.003 Q174
Result of numerical simulation
(47)
7.2.2. Comparison between them and are able to determine this informa-
Again there is very good agreement betwdéa) tion for complex mutation and selection schemes.
and (45)and for completeness we state tNe= oo Our results show that covariances between allele
result: frequencies can be quite substantial, even when mu-
1 tation rates are low and population size is quite large.
A =10 x (0.060, 6.461, 0.046,0.100,0.109 It is important to recognise that in an infinite popu-
2.064, 0.268 0.506,0.173 0.213". (48) lation the equilibrium covariances between allele fre-

quencies would all be zero. The finding of non-zero

The leading term in the covariances, for larye covariances under the regime that we have studied
is given byC/N and a comparison of in (46) and therefore represents a qualitative difference from the
N x (the matrix of covariances from the simulations) infinite-population case.
in (47) indicates that the covariances do depend on  For large population sizes the amount of load gen-
N1 to a reasonable approximation when selection erated by genetic drift is quite smar any given
is strong. Beyond this factor oV ! that is present  locus considered in isolation. However, eukaryotic
in the covariances, and arises as the leading term inorganisms typically have many thousands of genes,
N1, from multinomial sampling of the population, and each gene can have many stretches of nucleotide
the evidence is that there is also good agreement in sequence that are maintained by selection. Thus, over
the generalpattern of covariances predicted by the the entire genome it may be possible to generate

methods of this work. very substantial amounts of drift load, even when the
population is large(Kondrashov, 1995; Peck et al.,
1997)

8. Summary We note that the methods presented here can only

be used when population size is large in comparison to

In this work we have investigated some of the equi- the inverse of the allelic mutation rate. Thus, in sexual

librium properties of a finite population in which se- DNA-based organisms, where allelic mutation rates

lection and mutation occur at a single genetic locus of tend to be small, the methods presented here will be

a diploid organism. The theoretical results presented of most interest for the calculation of quantities whose
are an approximation that allows the rapid determi- leading term is of ordeN 1, such as the covariances

nation of allele frequencies along with covariances between allele frequencies. However, in RNA-based
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organisms, where mutation rates are much higher, the (21) is then solved by
methods presented here can be useful for calculating

a variety of different statistics. The same is true for B = }Z(A—l).j aZQj(p_) Cu. (A.6)
asexual organisms, where the entire genome can be 2 Iy apropi p=A

treated as a single locus where the relevant mutation

rate tends to be substantial. Thus, combinind25) and (26)eads to explicit pre-

dictions for the mean allele frequencies along with
their covariances in the limit of largd, for an arbi-
Appendix A. Solutions of the B and C equations trary number of alleles.

In this appendix, we indicate ho(20),
Appendix B. Standard Set 1

AC+CA' = T; (A.1)
and(21), In this Appendix, we give a set of mutation rates and
5 fitnesses that were generated randomly. Results for the

Z 382:(p) Bj + } Z 9782 (p) Ci =0, mean allele frequencies and the matrix of covariances

7 P p=a 2 T PPk | pop are calculated from these and in the main text, the

(A2) results are compared with numerical simulations.
We take

may be solved foC and B.

V)\//e begin using the properties of left and right eigen- Number of alleles = 10, (A7)
vectors ofA Population siz&V = 200Q (A.8)
AYi =i, A= ix] (A3)  ng
V=8 Y vix = IunitL x L matrix). Jistd = 1073

i 055 312556 %

(A.4) 0016 65397 4

Operating or(A.1) with X,'T from the left andy; from 7008991178

the right and using the eigenvalke. (A.3) it follows 744039 98103
that x] Cx; = x!I'xj/(x + *;). Then using(A.4) (21740118294 (A.9)
yields an explicit solution tgA.1): 449 2 80 58 2 5" '

%XX]I/[T 57 8105 5 01 3 5

CZA’H. (A.5) 863 7 2530 4 3

0908 33970 2

187 7 41059 6 ¢

943 918 963 954 955 921 918 954 945
918 984 942 939 986 989 965 987 945
963 942 976 984 956 923 960 986 920
954 939 984 941 945 939 905 933 980
955 986 956 945 951 937 931 971 947
921 989 923 939 937 975 970 963 966
918 965 960 905 931 970 911 973 967
954 987 986 933 971 963 973 919 923
945 945 920 980 947 966 967 923 918
946 951 949 929 943 964 961 918 0914

wstg = 1073 x (A.10)

O O O © O O © O
G b OOF, NWOORFRO®
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Appendix C. Standard Set 2 References

In this Appendix, we give a second set of mutation Crow, J.F.,, Kimura, M., 1970. An Introduction to Population
rates and fitnesses that correspond to strong selection.F Ige“e“C_S Tgeor{ég'lafpg_fblﬁ”d R(;]Wv NfEWTrTOV'(- ol Posula
Results for the mean allele frequencies and the matrix ~¢'senstein. J. - Bibliography of Theoretical Population

. . Genetics. Dowden, Hutchison and Ross Inc., Stroudsburg,
of covariances are calculated from these and in the  pepnsyivania.
main text, the results are compared with numerical Bartiett, M.S., 1978. An Introduction to Stochastic Processes.
simulations. Cambridge University Press, Cambridge.

We take the same number of alleles population size Ewens, W., 1969. Population Genetics. Methuen, London.

and mutation rates as used in Standard Set 1. i.e ag(ondrashov, A.S., 1995. Contamination of the genome by very
o slightly deleterious mutations—why have we not died 100 times

given by (A.7)—(A.9). over? Journal of Theoretical Biology 175, 583-594.
The matrix of fitnesses is now given by Peck, J.R., Barreau, G., Heath, S.C., 1997. Imperfect genes,
Fisherian mutation and the evolution of sex. Genetics 145,
Wwetg = 1072 1171-1199.

43 18 63 54 55 21 18 54 45
18 84 42 39 86 89 65 87 45
63 42 76 84 56 23 60 86 20
54 39 84 41 45 39 5 33 80
55 86 56 45 51 37 31 71 47
21 89 23 39 37 75 70 63 66
18 65 60 5 31 70 11 73 67
54 87 86 33 71 63 73 19 23
45 45 20 80 47 66 67 23 18
46 51 49 29 43 64 61 18 14

(A.10)

B = OO0 RANDO
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