
BioSystems 74 (2004) 15–27

Mutation and selection in a large population
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Abstract

In this paper we study a large, but finite population, in which mutation and selection occur at a single genetic locus in a
diploid organism. We provide theoretical results for the equilibrium allele frequencies, their variances and covariances and their
equilibrium distribution, when the population size is larger than the reciprocal of the mean allelic mutation rate. We are also able
to infer that the equilibrium distribution of allele frequencies takes the form of a constrained multivariate Gaussian distribution.
Our results provide a rapid way of obtaining useful information in the case of complex mutation and selection schemes when the
population size is large. We present numerical simulations to test the applicability of our theoretical formulations. The results
of these simulations are in very reasonable agreement with the theoretical predictions.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Biological evolution depends on changes in allele
frequencies and these changes can occur because of
various evolutionary “forces” that include selection,
mutation, and genetic drift. Understanding how these
evolutionary forces combine to produce distributions
of allele frequencies is, generally, a complex task.
Most progress has been made in the case of infinite
populations(Crow and Kimura, 1970), however, for
the more realistic case of finite populations, there has
been less progress.

In this paper we focus on the case a finite pop-
ulation in which mutation and selection occur at
a single genetic locus in a diploid organism with
non-overlapping generations. Our main objective is
to provide results that can help in the analysis of situ-
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ations that are either difficult to approach with purely
analytic methods or are highly time-consuming when
simulated on a computer. The results found can, in
particular, provide useful information in the case of a
complex selection scheme where the population is too
large to allow a complete study using only computer
simulations.

The primary restrictions on the applicability of our
approach are that the number of alleles is finite, hence
continuum of alleles models are not included, and that
the reciprocal of the population size is small compared
with the mean mutation rate. We clarify the origin of
this restriction inSection 6.1.

The genetic locus under consideration hasn possi-
ble alleles and we describe these by the column vector
p(t) ≡ (p1(t), p2(t), . . . , pn(t))

T (where T denotes
transpose), and thei’th element ofp(t) is the frequency
of allele i at generation (i.e., time)t (= 0,1,2,3 . . . ).
At the time of census, population size is fixed atN.
Thus the frequency of any allele can only be one of
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the values given by

Allowed allele frequencies

= 0

2N
,

1

2N
,

2

2N
,

3

2N
, · · · , 2N

2N
, (1)

and there are a total of 2N+1 possible values for each
element ofp(t). Because a value ofp(t) is simply a
specification of the value of each of then elements of
p(t), there exists a finite number of possible values of
p(t). This number would have the value(2N + 1)n if
the elements ofp(t) were independent, however, they
are constrained to sum to unity. This results in the
number of possible values ofp(t) being generally a
much smaller number and given by

(2N + n − 1)!

(2N)!(n − 1)!
.

In general, evolutionary biologists are most inter-
ested in the long-term outcome of evolution. There-
fore, we will concentrate on characterisingp(t) for
large values oft. The analysis we present applies for
the class of models where the value ofp(t), in an
infinite population, approaches auniqueequilibrium
value at long times.

We shall focus on the calculation of the mean and
variance of the various allele frequencies, along with
the covariances, over time, between allele frequencies.
Our calculations hold for the long term, once no sys-
tematic trends are exhibited by the population and only
the effects of genetic drift are present. We shall loosely
refer to this state of the population as “equilibrium” but
emphasise that there may be considerable stochastic-
ity present. Once this equilibrium regime is achieved,
we can interpret the results of calculations that involve
genetic drift in two different ways, both of which are
valid. The first way views the results for summary
statistics as being derived from an average, over a large
number of replicate populations that differ from each
other due to their different stochastic histories. The
second way takes the view that there is asinglepopu-
lation and the distributions or summary statistics aris-
ing from the calculations describe a time average over
this single population. In this work we shall generally
adopt the single population viewpoint.

As we shall see, the quantities we calculate allow
the determination of evolutionarily important quanti-
ties that include the level of genetic variance, the level

of heterozygosity, the mean fitness and also the loss
of fitness due to genetic drift (the drift load). An ad-
vantage of our work is that dependence on population
size,N, is explicitly present in the results, so compar-
ing results for different population sizes requires no
additional calculation.

Previous theoretical studies of mutation and selec-
tion in finite populations have generally assumed a
particular pattern of fitnesses and mutations. Summary
statistics, such as mean fitness, genetic variance and
the level of heterozygosity, have been found by com-
puter simulations and analytic approximations. Our
work allows for calculation of these quantities and can
readily deal with general schemes of mutation and se-
lection in a single framework.

We begin the presentation of the analysis with a
study of the infinite-population case. This is, essen-
tially, a re-formulation of previous work(Crow and
Kimura, 1970). We then use the results from the
infinite-population case as the basis for investigating
the case of finite-populations.

2. The model

Consider a diploid organism in which generations
are discrete. During each generation, the population
undergoes four phases:

1. The adults mate at random to produce zygotes.
These mature into juveniles. We assume that a very
large (effectively infinite) number of zygotes are
produced. The expected number of zygotes pro-
duced is the same for every adult (thus, there is no
fertility selection).

2. All of the adults die, leaving only the juveniles
alive.

3. Viability selection occurs. The probability that a
particular juvenile will survive viability selection
depends only on their genotype.

4. We assume that the resources present in the envi-
ronment are only sufficient to supportN adults,
thus, a non-selective thinning process occurs,
whereN juveniles are selected at random. These
juveniles become the adults of the next generation,
while the remainder die.

The n possible alleles at the one locus under se-
lection are numbered 1,2, . . . , n and thei’th allele is
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denoted byAi. An individual who inheritedAi from
one parent andAj from the other will be referred to
as an individual of type(i, j). The probability that a
juvenile of type(i, j) will survive viability selection
is given byWij ≡ Wji . Note that we do not assume
any relation betweenWii , Wij andWjj , thus, no partic-
ular dominance relation is assumed between any pair
of alleles.

It is convenient to be able to work in terms ofrela-
tivefitnesses, rather than absolute fitnesses. Therefore,
we define therelative fitnessof type (i, j) juveniles,
denotedwij , as:

wij = Wij

Wnn
. (2)

Thus, type(n, n) individuals are arbitrarily chosen as
the reference genotype, and have a relative fitness of
unity. It is also convenient to define the selection co-
efficient associated with genotype(i, j) by

sij = wij − 1. (3)

Finally we assume that mutations occur during the
production of gametes. If a particular gamete contains
a copy of parental allelej, then the probability that
this allele underwent a mutation to allelei is µij .

We shall analyse the above model when the recip-
rocal of the population size,N−1, is a small quantity
in the model and allows an expansion inN−1. In par-
ticular, this meansN−1 should be much smaller than
the mean mutation rate.

Ωi(p) =
pi

[∑
j wijpj −∑

jk wjkpjpk

]
+∑

jk[µijwjkpjpk − µjiwikpipk]

w̄(p)
(5)

3. The infinite population limit

To begin the analysis, we consider the limit as
population size,N, goes to infinity. In this case
the allowed allele frequencies, given in(1), become
continuous. The equilibrium of the population is de-
scribed by the vectorΛ = (Λ1,Λ2, . . . , Λn)

T and
this is assumed to beunique. Thus, many genera-
tions after an arbitrary starting point, the frequency
of alleleAi (i = 1,2, . . . , n) has a value given by the
i’th component ofΛ, namelyΛi. Furthermore, in the

infinite population limit, the values of the equilibrium
allelic frequencies are known with certainty and have
no fluctuations about their values.

We have assumed models which, whenN → ∞,
the long time limit ofp, i.e., p(∞), always achieves
the same value, namelyp(∞) = Λ, corresponding to
the existence of a unique equilibrium. While this is
the relevant case in many situations, it is possible to
choose the values ofµij andwij such that there may
be multiple equilibria possible. Other possibilities are
that allele frequencies may exhibit chaotic or other
complex behaviours. In this paper, we will not consider
models with these properties although we shall briefly
comment on multiple equilibria inSection 5.1.

In special cases it is possible to write analytic ex-
pressions for the equilibrium allele frequencies,Λ, in
terms of the values ofwij andµij and there is a large
literature on this topic, starting in the early days of the-
oretical population genetics(Felsenstein, 1981). How-
ever, we are not aware of any general expressions for
Λ. Nevertheless, it is straightforward to numerically
calculateΛ to a high degree of accuracy. One sim-
ply specifies an initial set of frequencies,p(0), and
iterates, to convergence, the equation that determines
the gene frequencies in subsequent generations. This
equation is

p(t + 1) = p(t) + Ω(p(t)), (4)

whereΩ(p) is ann component column vector with
elements

and

w̄(p) =
∑

jk

wjkpjpk. (6)

4. Finite populations

What is the outcome of evolution when the popula-
tion is finite in size? No general answer to this ques-
tion exists, however, a great deal can be said if we
restrict ourselves to the situation where the popula-
tion size,N, is sufficiently large that the allele fre-
quencies of(1) can be treated as continuous variables
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lying in the interval [0,1]. In this case, we can incor-
porate the most important effects of finite population
size by adding the random genetic drift termξ(t) =
(ξ1(t), ξ2(t), . . . , ξn(t))

T on the right hand side of(4):

p(t + 1) = p(t) + Ω(p(t)) + ξ(t). (7)

With E denoting the expectation operator andδi,j the
Kronecker delta (δi,j = 1 if i = j and is zero other-
wise), theξi(t)′s satisfy the standard conditional ex-
pectations

E[ξi(t)|p(t] = 0, E[ξi(t)pk(t)|p(t] = 0

E[ξi(t1)ξj(t2)|p(t)] = δt1,t2
pi(t1)δi,j − pi(t1)pj(t2)

2N
,

(8)

where the last result follows from a multinomial
distribution.

The fundamental quantities we are interested in
are the equilibrium allele frequencies along with their
variances and the covariances between different allele
frequencies. We can use(7) and (8)to derive approxi-
mate equation for these quantities whenN is suitably
large.

We note thatBarlett (1978)has presented calcula-
tions for the leading effects of finite population size
on a one locus, two allele model. His work exploits
the fact, as does this work, thatN−1 may be used as
an expansion parameter in the calculations.

4.1. Equations that determine the mean allele
frequencies and their variances and covariances

To determine the approximate means, variances and
covariances, we first take the unconditional expecta-
tion of (7). In equilibrium (wheret arguments are
omitted) we obtain

E[Ωi(p)] = 0. (9)

Denoting the mean value ofp in equilibrium byp̄:

E[p] = p̄ (10)

We subtractp̄ from (7) yielding pi(t + 1) − p̄i =
pi(t)−p̄i+Ωi(p(t))+ξi(t). We combine this equation
with the corresponding equation wherei is replaced
by j by multiplying thei andj equations together and
take expectation values to obtain

E[(pi(t + 1) − p̄i)(pj(t + 1) − p̄j)]

= E[(pi(t) − p̄i)(pj(t) − p̄j)]

+E[(pi(t) − p̄i)Ωj(p(t))]

+E[Ωi(p(t))(pj(t) − p̄j)] + E[ξi(t)ξj(t)].

(11)

In equilibrium this reduces to

E[(pi − p̄i)Ωj(p) + Ωi(p)(pj − p̄j)]

= −E[ξi(t)ξj(t)]. (12)

Using (9) and (10), we can write(12) as

E[(pi − p̄i)(Ωj(p) − Ωj(p̄))

+(Ωi(p) − Ωi(p̄))(pj − p̄j)] = −E[ξi(t)ξj(t)].

(13)

Eqs. (9) and (13)are, as they stand within our model,
exact. Let us now use them to obtain approximations
for the allele frequency means along with their vari-
ances and covariances.

4.2. Approximation

In order to derive useful approximations, we must
make certain plausible assumptions (assumptions 1–3
below). We will test the accuracy of these assumptions
shortly. Note that assumptions 1–3 are consistent with
Eqs. (9) and (13), in the limit of very largeN.

The assumptions are:

1. The mean allele frequencies,p̄, consist ofΛ (the
N = ∞ deterministic equilibrium result) plus a
correction whose leading term is of orderN−1.

2. The variances and covariances of the various allele
frequencies,E[(pi − p̄i)(pj − p̄j)] are of order
N−1.

3. Higher order correlations such asE[(pi− p̄i)(pj−
p̄j)(pk − p̄k)] are of orderN−2 or higher order in
N−1.

We determinep̄ andE[(pi − p̄i)(pj − p̄j)] up to
and including terms of orderN−1. To proceed, let us
introduce the quantitiesBi andCij which are defined
via

E[pi] ≡ p̄i = Λi + Bi

N
+ O

(
1

N2

)
, (14)

E[(pi − p̄i)(pj − p̄j)] = Cij

N
+ O

(
1

N2

)
, (15)
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thus,B is ann component column vector andC is an
n × n matrix and both are independent ofN.

It is natural to first determineCij and we do this by
expandingΩ(p̄) in (13) aboutp = p̄ to first order in
(p − p̄). Thus,E[(pi − p̄i)(Ωj(p)−Ωj(p̄))] in (13)
yields

E[(pi − p̄i)(Ωj(p) − Ωj(p̄))]

=
∑
k

E[(pi − p̄i)(pk − p̄k)]

× ∂Ωj(p)

∂pk

∣∣∣∣
p=p̄

+ O

(
1

N2

)

=
∑
k

Cik

N

∂Ωj(p)

∂pk

∣∣∣∣
p=Λ

+ O

(
1

N2

)
, (16)

the last equality following from the assumption of
(14), that p̄ is, to leading order inN−1, equal toΛ.
Additionally, the expectation on the right-hand-side of
(13) yields

E(piδij − pipj)

2N

= p̄iδij − p̄ip̄j − E[(pi − p̄i)(pj − p̄j)]

2N

= Λiδij − ΛiΛj

2N
+ O(N−2). (17)

(The last equality using(14) and (15)). Thus, the in-
troduction ofN independent matricesΓ andA given
by

Γij
def≡ Λiδij − ΛiΛj

2N
+ O(N−2), (18)

and

Ajk
def≡ − ∂Ωj(p)

∂pk

∣∣∣∣
p=Λ

, (19)

(16) leads to the matrix equation that determinesC:

AC+ CAT = Γ. (20)

OnceC is known, we can determineB by similarly
expanding the left-hand-side of(9) to secondorder in
p − p̄. This yields the equation

∑
j

∂Ωi(p)

∂pj

∣∣∣∣
p=Λ

Bj + 1

2

∑
j,k

∂2Ωi(p)

∂pj∂pk

∣∣∣∣
p=Λ

Cjk = 0.

(21)

4.3. Calculation of B and C

Here we give aprescriptionby whichB andC can
be calculated. The rationale underlying this is given
in Appendix A.

With Λ assumed known from numerical or
analytic methods, explicit calculations require
the form of Aij = −∂Ωi(p)/∂pj|p=Λ and also
∂2Ωj(p)/∂pk∂pl|p=Λ. For completeness, we state the
results in the case of frequency-independent selection:

Ajk = − 1

w̄(Λ)

{
δj,k

(∑
r

wjrΛr − w̄(Λ) −
∑
r,s

µrjwrsΛs

)

+Λj

(
wjk − 2

∑
r

wkrΛr −
∑
r

µrjwjk

)

+
∑
r

µjrΛrwrk + µjk

∑
r

wkrΛr

}
, (22)

∂2Ωi(p)

∂pr∂ps

∣∣∣∣
p=Λ

= 1

w̄(Λ)

{
2Ais

∑
j

wrjΛj + 2Air

∑
j

wsjΛj

+ δi,s

(
wir − 2

∑
j

wrjΛj −
∑
j

µjiwir

)

+ δi,r

(
wis − 2

∑
j

wsjΛj −
∑
j

µjiwis

)

+µirwrs + µiswrs − 2Λiwrs

}
. (23)

The solutions forB andC are written in terms of
ψi andχT

i , which are the right and left eigenvectors
of the matrixA associated with eigenvalueλi, i =
1,2, . . . , n. These are selected to obey

Aψi = λiψi, χT
i A = λiχ

T
i , χT

i ψj = δi,j. (24)

Then the matrixC can be written as

C =
n∑

i,j=1

ψiχ
T
i Γχjψ

T
j

λi + λj
. (25)

For the vectorB it is simpler to write out the com-
ponents rather than give an expression for the entire
vector. Thei’th component ofB is given by

Bi = 1

2

n∑
j,k,l=1

(A−1)ij
∂2Ωj(p)

∂pk∂pl

∣∣∣∣∣
p=Λ

Ckl. (26)



20 J.R. Peck et al. / BioSystems 74 (2004) 15–27

With these expressions, we have, via(14) and (15))
the means and variances or covariances of allele fre-
quencies to orderN−1.

5. Expressions for some biologically relevant
quantities

Various quantities of biological interest may be
expressed in terms of the mean allele frequencies
and their covariances. Using(14) and (15)), these
may, if desired, be expressed in terms ofB and
C.

5.1. Probability distribution

Perhaps the most fundamental quantity we can
approximately determine is the stationary probabil-
ity density,Φ(p), which has the interpretation that
Φ(p)dp1dp2 . . .dpn is the probability thatp1 lies
in the range(p1, p1 + dp1), p2 lies in the range
(p2, p2 + dp2) . . . . It can be shown that the follow-
ing distribution yields mean allele frequencies and
covariances that are, to orderN−1, identical to the
results(14) and (15):

Φ(p) = Zδ(FTp − 1)

×exp

[
−N

2
(p − p̄)T[C]−1(p − p̄)

]
. (27)

In (27), Z is a constant that ensures the inte-
gral of Φ(p) over all allele frequencies is unity,∫

dp1dp2 . . .dpnΦ(p) = 1, as is required of a prob-
ability density. The quantityδ(�) denotes a Dirac
delta function (which satisfies

∫∞
−∞ δ(x− a)g(x)dx =

g(a) for g(x) an arbitrary function). The quantity
F is an n component column vector with all ele-
ments equal to 1:F = (1,1,1, . . . )T and [C]−1

denotes thepseudo-inverseof the matrixC. We note
that from Eq. (15), C contains all information, to
O(N−1), about all variances and covariances of allele
frequencies.

The form of(27)can be understood as follows. The
factor δ

(
FTp − 1

) ≡ δ
(∑n

i=1pi − 1
)

ensures that
Φ(p) is only non-zero at frequencies that sum to unity.
The remaining factor is a multivariate Gaussian corre-
sponding to a mean lying atp = p̄, and the Gaussian
is characterised by fluctuations about the mean, i.e.,

variances and covariances, that are of orderN−1. In
the limit N → ∞, Φ(p) in (27) collapses toδ(p −
Λ), which corresponds to a distribution with sharply
defined allele frequencies given by the components
of Λ.

It seems very plausible that in the event of multiple,
well-separated, equilbria,Eq. (27)describes a popu-
lation that is trapped in the vicinity of the particular
equilibrium located atp = p̄. One can also envisage
a population that makes drift induced transitions be-
tweennearbyequlibria, or other movement between
equilibria, however, the analysis of these lies well be-
yond the present work.

5.2. Mean heterozygosity

The mean heterozygosity is the average proportion
of individuals that are heterozygous. A particular pop-
ulation, with allele frequencies given by the elements
of p, has the fraction of heterozygotic individuals
given by

∑
i,j(i
≡j) pipj = 1 − ∑

i p
2
i ≡ 1 − pTp.

Time averaging this quantity yields the expected mean
heterozygosity,H :

H = E[1 − pTp] = 1 − p̄Tp̄ + Tr[C]

N

= 1 − ΛTΛ + 2ΛT B

N
+ Tr[C]

N
, (28)

whereTr[C] ≡ ∑
i Cii .

5.3. Genetic variance

Let the column vectorx = (x1, x2, . . . , xL)
T

contain the effects of the different alleles. The
variance of allelic effects of a population whose
allele frequencies arep, at a particular time, is

2
[∑

i pix
2
i − (∑

i pixi
)2]. Theexpectedgenetic vari-

ance is the time average of this quantity:

Vg = 2E


∑

i

pix
2
i −

∑
i,j

pipjxixj




= 2


∑

i

p̄ix
2
i −

∑
i,j

(p̄ip̄j + Cij/N)xixj



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= 2


∑

i

Λix
2
i −

∑
i,j

ΛiΛjxixj




+ 1

N


∑

i

Bix
2
i −2

∑
i,j

BiBjxixj+
∑
i,j

Cijxixj


 .

(29)

5.4. Drift load

The drift load is the fraction of the population
that die each generation due to genetic drift causing
some individuals to have a fitness that is less than
the optimum. Withw̄(p) defined in(6), E[w̄(p)] is
the expected (i.e., time averaged) mean fitness of the
population in equilibrium. Furthermore, in an infinite
equilibrium population, the allelic frequencies are
precisely given byΛ (with no deviations about this
value), thus,w̄(Λ) is the mean equilibrium fitness of
an infinite population. Therefore, the expected drift
load is given by

Ldrift = w̄(Λ) − E[w̄(p)]

w̄(Λ)
. (30)

Using (14) and (15)we find

w̄ =
∑
j,k

wjk

(
p̄jp̄k + Cjk

N

)

=
∑
j,k

wjk

(
ΛjΛk + ΛjBk + BjΛk + Cjk

N

)
,

hence

Ldrift = 1

N

(−∑j,k wjk(2ΛjBk + Cjk)∑
j,k wjkΛjΛk

)
. (31)

6. Comparison with results for two alleles

Having derived estimates for the mean allele
frequencies and their covariances from a large
N approximation of diffusion analysis, we now
compare these with a diffusion analysis results
for the case of two alleles. This serves to make
clear the domain of validity of our approximate
results.

Following Ewens (1969)we use the notation

µ21 = u, µ12 = v

w11 = 1 + s1, w12 = 1 + s2, w22 = 1, (32)

with s1, s2, u, v � 1 but no particular relation between
s1,1 ands2, so allelic effects are, in general, neither
additive nor multiplicative. Then diffusion analysis,
(Ewens, 1969), givesf(x)dx as the probability that the
frequency of alleleA1 will lie in the range(x, x+dx),
where

f(x)= x4Nv−1(1 − x)4Nu−1exp[4Ns2x+2N(s1−2s2)x
2]∫ 1

0 dy y4Nv−1(1−y)4Nu−1exp[4Ns2y+2N(s1−2s2)y2]
.

(33)

The mean frequency of alleleA1 is thus given, in the
diffusion approximation, by

p̄1 =
∫ 1

0
dx xf(x), (34)

and the mean frequency of alleleA2 is p̄2 = 1 − p̄1.
The covariance of the frequencies ofA1 andA2 is, in
the diffusion approximation,

cov(p1, p2) ≡ E(p1 − p̄1, p2 − p̄2)

=
∫ 1

0
dx x(1 − x) f(x) − p̄1(1 − p̄1)

= −
(∫ 1

0
dx x2f(x) − p̄2

1

)
. (35)

6.1. Selectively neutral case

In the case where boths1 and s2 are zero,p̄1 and
cov(p1, p2), as given by(34) and (35)may be eval-
uated in closed form. This yields the following ex-
pressions, which are the results of standard diffusion
analysis:

p̄1 = v

u + v

cov(p1, p2) = − 1

4N

uv

(v + u)2(v + u + (1/4N))

.

(36)

If we specialise the results given for the calculations
of B andC in (25) and (26)to then = 2 case, we ob-
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Table 1
A set of results comparing the standard diffusion results and the largeN approximate results of this work, for the case of a locus with
two alleles

N s1 s2 u v Diffusion
result for p̄1

LargeN
approximate forp̄1

Diffusion result
for cov(p1, p2)

LargeN approximate
for cov(p1, p2)

104 0.000 0.000 0.00040 0.00080 0.6667 0.6667 0.0045 0.0046
104 0.001 0.000 0.00040 0.00080 0.7759 0.7757 0.0030 0.0030
104 0.001 0.002 0.00040 0.00080 0.6683 0.6683 0.0030 0.0030
105 0.001 0.002 0.00004 0.00008 0.6676 0.6676 0.0007 0.0007
105 0.010 −0.010 0.00004 0.00008 0.9980 0.9980 3× 10−7 3 × 10−7

tain, after some work, the results of largeN analysis
of this work.

p̄1 = v

u + v

cov(p1, p2) = − 1

4N

uv

(v + u)3

. (37)

A comparison of cov(p1, p2) from (36) and (37)in-
dicates that the two results are approximately equal
only if N−1 � 4(u + v). This appears to be the
typical limitation of our approach and we shall con-
servatively take this to mean thatN−1 must be much
smaller than the mean allelic mutation rate. This is not
a strict criterion. If we consider the two allele case,
it is evident that the probability density will only be
similar to a Gaussian (i.e., will be a unimodal distri-
bution) when the factorx4Nv−1(1 − x)4Nu−1 in (33)
doesnot result in sharp peaks atx = 0 andx = 1,
corresponding to quasi-fixation of alleles in the vicin-
ity of their boundary-value frequencies. A unimodal
distribution will be obtained when 4Nv − 1 > 0 and
4Nu − 1 > 0. We infer that the largeN results of
the present work are applicable when, apart from
N being sufficiently large, the pattern of mutation
probabilities,µij , is such that the population can-
not get irreversibly “trapped” at some alleles. To
make stronger theoretical statements concerning this
seems to be formidably difficult. Let us therefore
discuss the numerical work and simulations we have
performed.

6.2. More general two allele case

We have carried out numerical comparisons of the
predictions of diffusion analysis given in(34) and (35)
and the results of this work summarised in(25) and
(26). We have restricted selection coefficients to be

small to allow the use of diffusion results. We find
that whenN−1 is reasonably smaller than the allelic
mutations rates, the agreement is extremely good, as
Table 1illustrates.

7. Standardised selection/mutation scheme

As a further application of our results, we consider
a single set of mutation rates and two different choices
for the fitnesses. We refer to these asStandard Sets
1 and 2 and compare the results withnumerical sim-
ulations. We take, for both Standard Sets 1 and 2, a
population size of 2000 with 10 alleles segregating at
the locus in question, thus

N = 2000, n = 10. (38)

7.1. Results for Standard Set 1

Mutation rates and fitnessesµstd andwstd are given
in Appendix B. The maximum mutation rates were
of chosen to be of order 10−3. This very large value
was chosen to speed up the approach to equilibrium
of the numerical simulations. The fitnesses of Stan-
dard Set 1 correspond to relatively small selection
coefficients.

We present the results of the approximation of this
work (“largeN approximation”) and numerical sim-
ulations of the life-cycle of the one-locus randomly
mating diploid organism considered in this work for
the standard set of fitnesses and mutation rates.

7.1.1. Mean allele frequencies
Using(14) and (26), the approximation of this work

yields, for the mean allele frequencies,
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p̄ = 10−1 × (0.810,1.182,1.244,0.902,1.026,1.099,1.124,0.804,0.690,1.118)T︸ ︷︷ ︸
Result of largeN approximation

, (39)

while the numerical simulations produced

p̄ = 10−1 × (0.810,1.182,1.244,0.902,1.025,1.099,1.126,0.804,0.691,1.119)T︸ ︷︷ ︸
Result of numerical simulation

. (40)

7.1.2. Covariances
From (15) and (25), the matrix of covariances is given byC/N whereC is a symmetric matrix, whose

independent elements are

C = 10−1 ×




3.604
−1.181 7.694
−0.013 −2.846 7.099
−0.127 −0.884 −0.149 3.187
−0.220 −0.842 −0.227 −0.533 5.405
−0.798 −0.489 −1.007 −0.480 −1.038 5.129
−0.501 −0.738 −0.719 −0.353 −1.052 −0.445 4.679
−0.139 −0.146 −0.611 −0.254 −0.354 −0.366 −0.511 3.168
−0.328 0.105 −1.014 0.083 −0.370 −0.340 −0.016 −0.234 2.585
−0.299 −0.673 −0.514 −0.490 −0.769 −0.166 −0.343 −0.552 −0.471 4.277




︸ ︷︷ ︸
Result of largeN approximation

.

(41)

The quantity thatC can be directly compared with from the numerical simulations is

N × matrix of covariances

= 10−1 ×




3.672
−1.213 7.674
−0.008 −2.811 7.346
−0.145 −0.809 −0.270 3.328
−0.243 −0.901 −0.173 −0.556 5.562
−0.767 −0.540 −1.166 −0.425 −1.018 5.210
−0.551 −0.777 −0.695 −0.399 −1.109 −0.379 4.818
−0.137 −0.012 −0.591 −0.267 −0.358 −0.373 −0.530 3.176
−0.295 0.047 −1.082 0.086 −0.390 −0.332 −0.0032 −0.239 2.618
−0.313 −0.658 −0.550 −0.545 −0.813 −0.211 −0.345 −0.668 −0.382 4.484




︸ ︷︷ ︸
Result of numerical simulation

.

(42)

7.1.3. Comparison
There is very good agreement between(39) and (40). This is not surprising since the result is primarily the

N = ∞ result,

Λ = 10−1 × (0.809,1.183,1.241,0.901,1.026,1.099,1.126,0.806,0.691,1.119)T. (43)
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We have previously expressedp̄ asΛ plus anO(N−1)

correction term,(14). However, for the population
sizes considered, theO(N−1) correction term is hard
to extract and compare with theory because statis-
tical errors in p̄ cannot be disentangled from this
term.

By contrast, the leading term in the covariances
is notO(N0) but theO(N−1) termC/N and conse-
quently this term is far more readily observable than
theO(N−1) terms inp̄. We have presentedC in (41)
andN × (the matrix of covariances from the simula-
tions) in (42). There is a reasonably good agreement
between the approximation of this work and the result
of the simulations, thereby suggesting that the covari-
ances do scale asN−1 for largeN when selection is
weak.

p̄ = 10−1 × (0.060,6.468,0.046,0.100,0.110,2.056,0.268,0.506,0.173,0.213)T︸ ︷︷ ︸
Result of largeN approximation

. (44)

while the numerical simulations produced

p̄ = 10−1 × (0.060,6.468,0.046,0.100,0.110,2.057,0.268,0.505,0.172,0.213)T︸ ︷︷ ︸
Result of numerical simulation

. (45)

7.1.4. Covariances
From (15) and (25), the matrix of covariances is given byC/N whereC is a symmetric matrix, whose

independent elements are

C = 10−1 ×




0.021

0.012 8.226

0.000 −0.132 0.0253

0.000 −0.103 0.002 0.047

0.002 0.238 −0.004 −0.004 0.216

−0.040 −7.906 0.118 0.066 −0.487 9.288

0.000 −0.232 0.001 −0.001 −0.010 −0.025 0.273

0.006 0.166 −0.011 −0.007 0.059 −1.104 −0.010 0.948

0.000 −0.059 0.000 0.001 0.000 −0.029 0.002 −0.011 0.099

0.000 −0.210 0.003 0.001 −0.010 0.119 0.001 −0.036 −0.003 0.136




︸ ︷︷ ︸
Result of largeN approximation

.

(46)

It should be noted that onceΛ is known, the results
of this work forp̄ and cov(pi, pj) were calculated, for
anyN,w andµ on a standard PC in seconds, while
the numerical simulation results took an appreciable
amount of computer time.

7.2. Results for Standard Set 2

Mutation rates for this set were identical to those of
Standard Set 1. The fitnesseswstd for this set are given
in Appendix Cand correspond to quite large selection
coefficients.

7.2.1. Mean allele frequencies
Using(14) and (26), the approximation of this work

yields, for the mean allele frequencies,
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The quantity thatC can be directly compared with from the numerical simulations is

N × matrix of covariances

= 10−1 ×




0.033

0.007 8.736

−0.001 −0.136 0.034

−0.001 −0.109 0.001 0.064

0.003 0.237 −0.005 −0.003 0.254

−0.046 −8.183 0.116 0.055 −0.521 9.629

−0.002 −0.268 0.002 0.000 −0.013 −0.027 0.321

0.007 0.037 −0.013 −0.008 0.066 −1.110 −0.014 1.083

0.000 −0.066 0.000 0.000 −0.004 −0.046 −0.001 −0.010 0.129

0.000 −0.256 0.002 0.000 −0.013 0.132 0.002 −0.038 −0.003 0.174




︸ ︷︷ ︸
Result of numerical simulation

.

(47)

7.2.2. Comparison
Again there is very good agreement between(44)

and (45)and for completeness we state theN = ∞
result:

Λ = 10−1 × (0.060,6.461,0.046,0.100,0.109,

2.064,0.268,0.506,0.173,0.213)T. (48)

The leading term in the covariances, for largeN,
is given byC/N and a comparison ofC in (46) and
N× (the matrix of covariances from the simulations)
in (47) indicates that the covariances do depend on
N−1 to a reasonable approximation when selection
is strong. Beyond this factor ofN−1 that is present
in the covariances, and arises as the leading term in
N−1, from multinomial sampling of the population,
the evidence is that there is also good agreement in
the generalpattern of covariances predicted by the
methods of this work.

8. Summary

In this work we have investigated some of the equi-
librium properties of a finite population in which se-
lection and mutation occur at a single genetic locus of
a diploid organism. The theoretical results presented
are an approximation that allows the rapid determi-
nation of allele frequencies along with covariances

between them and are able to determine this informa-
tion for complex mutation and selection schemes.

Our results show that covariances between allele
frequencies can be quite substantial, even when mu-
tation rates are low and population size is quite large.
It is important to recognise that in an infinite popu-
lation the equilibrium covariances between allele fre-
quencies would all be zero. The finding of non-zero
covariances under the regime that we have studied
therefore represents a qualitative difference from the
infinite-population case.

For large population sizes the amount of load gen-
erated by genetic drift is quite smallfor any given
locus, considered in isolation. However, eukaryotic
organisms typically have many thousands of genes,
and each gene can have many stretches of nucleotide
sequence that are maintained by selection. Thus, over
the entire genome it may be possible to generate
very substantial amounts of drift load, even when the
population is large(Kondrashov, 1995; Peck et al.,
1997).

We note that the methods presented here can only
be used when population size is large in comparison to
the inverse of the allelic mutation rate. Thus, in sexual
DNA-based organisms, where allelic mutation rates
tend to be small, the methods presented here will be
of most interest for the calculation of quantities whose
leading term is of orderN−1, such as the covariances
between allele frequencies. However, in RNA-based
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organisms, where mutation rates are much higher, the
methods presented here can be useful for calculating
a variety of different statistics. The same is true for
asexual organisms, where the entire genome can be
treated as a single locus where the relevant mutation
rate tends to be substantial.

Appendix A. Solutions of the B and C equations

In this appendix, we indicate how(20),

AC+ CAT = Γ, (A.1)

and(21),

∑
j

∂Ωi(p)

∂pj

∣∣∣∣
p=Λ

Bj + 1

2

∑
j,k

∂2Ωi(p)

∂pj∂pk

∣∣∣∣
p=Λ

Cjk = 0,

(A.2)

may be solved forC andB.
We begin using the properties of left and right eigen-

vectors ofA

Aψi = λiψi, χT
i A = λiχ

T
i , (A.3)

χT
i ψj = δij ,

∑
i

ψiχ
T
i = I(unitL × Lmatrix).

(A.4)

Operating on(A.1) with χT
i from the left andχj from

the right and using the eigenvalueEq. (A.3), it follows
that χT

i Cχj = χT
i Γχj/(λi + λj). Then using(A.4)

yields an explicit solution to(A.1):

C =
∑
i,j

ψiχ
T
i Γχjψ

T
j

λi + λj
. (A.5)

wstd = 10−3 ×




943 918 963 954 955 921 918 954 945 946
918 984 942 939 986 989 965 987 945 951
963 942 976 984 956 923 960 986 920 949
954 939 984 941 945 939 905 933 980 929
955 986 956 945 951 937 931 971 947 943
921 989 923 939 937 975 970 963 966 964
918 965 960 905 931 970 911 973 967 961
954 987 986 933 971 963 973 919 923 918
945 945 920 980 947 966 967 923 918 914
946 951 949 929 943 964 961 918 914 915




. (A.10)

(21) is then solved by

Bi = 1

2

∑
j,k,l

(A−1)ij
∂2Ωj(p)

∂pk∂pl

∣∣∣∣∣
p=Λ

Ckl. (A.6)

Thus, combining(25) and (26)leads to explicit pre-
dictions for the mean allele frequencies along with
their covariances in the limit of largeN, for an arbi-
trary number of alleles.

Appendix B. Standard Set 1

In this Appendix, we give a set of mutation rates and
fitnesses that were generated randomly. Results for the
mean allele frequencies and the matrix of covariances
are calculated from these and in the main text, the
results are compared with numerical simulations.

We take

Number of allelesn = 10, (A.7)

Population sizeN = 2000, (A.8)

and

µstd = 10−3

×




0 5 5 3 1 2 5 5 6 8
0 0 1 6 6 5 3 9 7 4
7 0 0 8 9 9 1 1 7 8
7 4 4 0 3 9 9 8 10 3
9 1 7 4 0 1 1 8 9 4
4 4 9 2 8 0 5 8 2 5
5 7 8 10 5 5 0 1 3 5
8 6 3 7 2 5 3 0 4 3
0 9 0 8 3 3 9 7 0 2
1 8 7 7 4 10 5 9 6 0




. (A.9)
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Appendix C. Standard Set 2

In this Appendix, we give a second set of mutation
rates and fitnesses that correspond to strong selection.
Results for the mean allele frequencies and the matrix
of covariances are calculated from these and in the
main text, the results are compared with numerical
simulations.

We take the same number of alleles population size
and mutation rates as used in Standard Set 1, i.e., as
given by(A.7)–(A.9).

The matrix of fitnesses is now given by

wstd = 10−2

×




43 18 63 54 55 21 18 54 45 46
18 84 42 39 86 89 65 87 45 51
63 42 76 84 56 23 60 86 20 49
54 39 84 41 45 39 5 33 80 29
55 86 56 45 51 37 31 71 47 43
21 89 23 39 37 75 70 63 66 64
18 65 60 5 31 70 11 73 67 61
54 87 86 33 71 63 73 19 23 18
45 45 20 80 47 66 67 23 18 14
46 51 49 29 43 64 61 18 14 15



.

(A.10)
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