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Abstract. In this paper we apply functional methods to the study of polyacetylene. We 
represent the polyacetylene free energy as a functional determinant ratio, obtain the uniform 
dimerization equation and calculate the soliton creation energy in some limiting cases. 

1. Introduction 

Polyacetylene, (CH),, is the simplest linear conjugated polymer of the CH group. In 
the ground state the polymer is made of alternating single and double bonds and said 
to be dimerized. A theoretical model which describes the dimerization of this polymer 
has been proposed by Su, Schrieffer and Heeger (SSH) [ 11. They showed that the lattice 
deformation energy due to dimerization (the charge density wave of wavenumber 2 k F )  
is overcome by the change in the electronic energy and that the ground state of the 
system is a dimerized one with two CH groups in a unit cell. They have also shown 
that the system admits a soliton solution and that the soliton exhibit very peculiar 
electronic properties. 

In the analysis of SSH the lattice is treated as discrete, which makes mathematical 
analysis rather complicated. To avoid this difficulty Takayama, Lin-Liu and Maki 
(TLM) [ 2 ]  constructed a continuum version of the model. Here the Hamiltonian of the 
system is represented by a (1 + 1 )-dimensional Dirac operator with a position dependent 
mass and the velocity of light replaced by the Fermi velocity U,. With the continuum 
model one can carry out the mathematical analysis easily and also make use of the 
results obtained for relativistic quantum field theoretic models. 

In the present work we study polyacetylene from a functional integral point of 
view. We carry out the direct evaluation of the functional integrals for the effective 
action (the free energy) and obtain the gap equation and soliton creation energy. To 
simplify some computations we employ the Schwinger proper time formalism. Although 
our analysis here is exact, we point out that it is also suitable for a systematic 
approximation if the system under consideration does not admit exact evaluation of 
the functional integrals. 

In the next section we represent the free energy in terms of a functional determinant. 
In section 3 we write down the exact formula for the soliton free energy. In section 4 
the soliton free energy is evaluated in various limits. Section 5 is devoted to conclusion 
and discussion. In appendix A some technical points concerning integration over 
Grassmann variables and functional determinants are presented. In appendix B we 
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comment on the high-energy different cut-off procedures. In appendix C we derive the 
'magic formula' for functional determinants. Finally, in appendix D we construct an 
alternative integral representation for the soliton free energy. 

2. Expressing the free energy in terms of a functional determinant ratio 

In this work we model polyacetylene as a continuum field theory of fermions moving 
in one spatial dimension (labelled by x)  and coupled to a static dimerization field [2]. 
In terms of a Euclidean action S depending on independent Grassmann fields $ and 
6 the model can be written as [3] 

L = 

H = - ~ U F ~ ~ U ~ + A U '  

dx 6 ( d r  + H)$ 5 
(2 . la)  

(2 . lb)  

(2.lc) 

where p is the reciprocal of the temperature T and 7 is a Euclidean time variable. 
The quantity A is the static dimerization field (in the present work it depends only on 
x and not r )  and oQ and g are effective spring and coupling constants for the 
dimerization. The Fermi velocity is denoted by uF and uk ( k  = 1,2,3)  are the Pauli 
matrices which describe the physics in the problem associated with electrons moving 
at f v F  (they do not describe the spin which plays an almost passive role in what 
follows and merely results in a factor of two appearing; we shall point out where this 
occurs below). 

It is convenient to calculate not the full free energy of the system but rather the 
difference in free energy between the system of interest and an appropriately chosen 
reference system (denoted by a subscript 0). Thus, following standard methods we 
determine F - Fo from a functional integral over Grassmann fields $ and 6 that are 
antiperiodic in r over p :  

e-P(F-Fo) = [ 5 dE6l d[+I exp(-S)] 

x [ 5 d[$1 d[+l ~ X P ( - ~ O ) ] - ' .  (2.2) 

and So follows from S with the replacement A + Ao. The free energy difference F - Fo 
follows from this equation however its physical value follows by treating A as a 
variational field and minimizing F - Fo with respect to parameters appearing in A. We 
shall say more on this in later sections where various choices will be made for A and 
Po. On carrying out the functional integrations we obtain a ratio of two functional 
determinants; some technical points associated with this are discussed in appendix A. 
We obtain 

where the index 2 follows from the two spin species each contributing a factor of a 
determinant ratio and the determinants are evaluated on eigenfunctions which are 
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is discussed in appendix A it is possible to express 
thus we can write 

3. Soliton creation energy 

As has been discussed in section 1, the dimerization field of polyacetylene is capable 
of supporting topological solitons. 

In this section we shall consider the case of a single soliton and calculate its creation 
energy, i.e. the zero temperature limit of F - Fo where Fo is the free energy of a 
soliton-free uniform system with dimerization 

(a derivation of this may be found at the beginning of appendix B). We take the soliton 
profile, A(x), to be 

A(x) = Po tanh(x/[) (3.2) 

where 6 is a parameter to be determined by requiring that the free energy is at a 
minimum when 6 is at its physical value. 

From section 2 we have 

(3.3) 

Using the form for H given by ( 2 . 1 ~ )  it follows that (A'(x) = d,A(x)) 

H 2  = -u:a:+A2(x)+ c2uFA'(x) (3.4a) 

H i =  - ~ k d : + A i .  (3.4b) 

Within the determinant ratio we diagonalize both -8: and a2 (eigenvalues w', = 
( ~ ( 2 n  + 1)//3)' and ~7 = kl respectively) to obtain 

The determinants on the RHS of this equation are taken in a space with no matrix 
structure where -3: etc operates. 

With the introduction of the dimensionless variables 

a , = A  ( l+*  a:)'" 
we can re-express the RHS of (3.5) as 

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

3i det[a: -a: - A ( A  +a)  sech' y ]  
R H S =  n n 

n=--Oc 0 det[ a: -a:] (3.7) 
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In appendix C we present a derivation of a known ‘magic result’ for functional 
determinants [4]: 

det[-d:-A(A + 1 )  sech2y-z] T(l+&)T(&) 
(3.8) - - 

det[ -8: - z ]  r(l + A  +J-z)T(J-z-A)’ 
With this result we can write 

det[-$+H2] + an)T(a ,  1 = n  det[-df+ Hi] ,,,r r( 1 +a,, + aA)T(a,, - u A ) *  (3.9) 

Hence the free energy difference of (3.3) can be written (we have evaluated the 
elementary integral over x involving the dimerization) 

In the limit of zero temperature F - Fo+ E - Eo,  the soliton creation energy and 
1/P 2, + jzm dw/27r. Note however that the finite bandwidth of the electronic spectrum 
W = 2vFpF (pF = Fermi momentum) has not been taken into account in the evaluation 
of the functional determinant ratio in (3.9). We would normally expect to implement 
this in, for example, momentum integrals however as is discussed in appendix B it 
can, quite equivalently, be made in the frequency integral. Thus, taking into account 
the evenness of the integrand, we have ~ ~ m d w / 2 7 r + j ~ / 2 d w / 7 r .  We now make the 
change of variables 

U = ( 1  + W ~ / A ~ ) ’ / ~  (3.11) 

use T(z + 1) = zT(z) and carry out the sum over U. We obtain 

-- E - Eo --‘I T 4 ( A U )  ] -A?+? E u 2  
In - 

“ u d u  
A0 7~ 1 (u2-1)1’2 u 2 - 1  rZ(Au+A)T2(AU-A) 

(3.12) 

where 

A = ( 1  + W2/4Ai)1’2. (3.13) 

An interesting feature of (3.12) is that the RHS is well approximated by allowing 
Ao/ W +  0 (we shall loosely term this the ‘no cut-off limit’). As a result (3.12) leads, to 
a good approximation, to a universal function depending only on A. To see this we 
use the ‘gap equation’ (3.1) to eliminate the second term on the RHS of (3.12). 

We have 

- A u F  T =  -- A In [($)‘I. 
g 7r 

(3.14) 

The large U part of the integral in (3.12) accurately cancels with the logarithmic term 
(3.14) (with power-law corrections in the small quantity Ao/ W). Evidence for this 
follows by replacing the gamma functions in the integral by their large argument 
asymptotic forms and evaluating the resulting integral. If we use the leading term in 
the asymptotic series this leads to 

(3.15) 
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The integral that results in (3.12) from this is 

= 1 In [(E)’] ”I’ 7T 1 (U’-l)’/’ d u  7T 
(3.16) 

and this is quickly shown to cancel (with power-law corrections in the small quantity 
A,/ W )  with the final, logarithmic term, in (3.12). Thus assuming the power-law 
corrections in A,/ W are neglectable in the formula for the soliton creation energy, we 
do the following. We re-represent the second term in (3.12) as minus the integral 
appearing in (3.16). Then combining this with the first integral in (3.12) and taking 
the upper limit of the integrals to be infinity we obtain the universal function of A 

U r4(hU)1/Z e 2 A / ”  
-- 

r 2 ( A U + A ) r 2 ( A U - A )  
- -L Ilm du 

E - E o  
A0 7T 

(3.17) 

In appendix D we derive an alternative but equivalent integral representation for 
( E  - Eo)/Ao.  

4. Evaluation of the formula for various values of A 

Formula (3.17) for the creation energy of the soliton (in units of Ao,  the zero-temperature 
dimerization) does not, to our knowledge, have a simple form for general values of A. 
In the case where A is zero or a positive integer analytic expressions can be obtained 
as we shall demonstrate in this section. As it will turn out this discrete set includes 
the physical value of A (i.e. the one that minimizes the energy) namely A = 1. 

To proceed we distinguish two separate cases: 

Case (a). A = 0. This corresponds to a discontinuous jump in the dimerization. In this 
limit the gamma functions are replaced by the reciprocal of their argument and we 
quickly obtain the result 

E - E o  
A0 

-- - 1.  (4.1) 

Case (b). A =positive integer. This case is more complicated than the previous one. 
We need to use the identities 

/ A  \ 

j = 1  
( 4 . 2 ~ )  

r ( a ) =  n ( a - j )  r ‘ ( a - A ) .  (4.2b) 
( j : l  ) 

Using these within the equation for the soliton creation energy, (3.17), employing the 
identity U/( U’ - 1)”’ = (d/du)(u’ - 1)’’’ and integrating by parts we obtain: 

(4.3) 
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Finally we make the variable change U = ( u 2 -  1)"2, employ twice the elementary 
identity u 2 / ( u 2 + a 2 ) =  1 - a 2 / ( u 2 + a 2 )  and use 

to obtain 

(4.6) 

As noted at the beginning of this section the physical value of A corresponds to 
A = 1. This may be verified directly by showing that (3.17) has an extremum at A = 1 
(alternatively the result of appendix D may be used to show this). That this point is 
a minimum follows from the convex nature of the free energy (we imagine that A. is 
held fixed and varying A corresponds to varying the variational length scale 6 ) .  
Numerical analysis explicitly verifies the correctness of this. We thus have from (4.6) 
the physical soliton creation energy corresponding to A = 1: 

5. Conclusion 

In this work we have studied solitons in polycetylene using functional methods. We 
have represented the soliton creation energy in terms of a functional determinant ratio 
and have provided an integral representation for the creation energy. This has avoided 
any phase shift analysis [2] and is an efficient method of tackling the problem. Out of 
this analysis we have shown that the soliton creation energy, ( E  - E o ) / A o ,  is rather 
accurately a universal function of A = Ao[/ uF.  We have also given some discussion to 
alternative ways of implementing cut-offs in the theory. 

The motivation for presenting the analysis given lies in work to be presented in 
future publications. In these we will use the results derived above to test an approxima- 
tion method for the calculation of free energies of fermionic systems involving extended 
structures (solitons). 

These investigations will furnish us with a solid foundation for the approximate 
treatment of more complicated systems, where exact calculations have not yet been 
performed. 
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Appendix A 

In this appendix we shall discuss several technical points concerning Grassmann 
functional integrals and their relationship to functional determinant ratios. Factors of 
two associated with spin will be neglected in this appendix. 

In section 2 of this work we encountered functional integrals over Grassmann fields 
(which were antiperiodic in T over p )  of the form 

and we asserted that 

The integral Z is usually taken to represent Tr[exp( -PA)] where = dx $H$, I) is 
a Fermion field operator and Tr denotes a trace over the many particle Hilbert space. 
As has been pointed out by Faddeev [ 5 ]  a number of operations not consistent with 
the definition of the functional integrals have been used to obtain the result (A.2). To 
see under what conditions (A.2) leads to the correct result we shall assume H (the 
first quantized Hamiltonian) is diagonalizable and has eigenvalues & k .  By explicit 
calculation we have 

The functional determinant ratio, by contrast, leads only to the first sum in (A.3). Thus 
only in circumstances where the second sum vanishes identically is it valid to use the 
functional determinant ratio. Perhaps the most important case where the second sum 
in (A.3) vanishes is when the spectra of both H and Ho are symmetric, that is, there 
is a pairing such that for each non-zero eigenvalue there exists precisely one eigenvalue 
of the opposite sign. A detailed analysis is possible in the case of polycetylene where 
the boundary conditions and eigenvalues are known [ 6 ] .  In the thermodynamic limit 
(L + CO) it can be verified that the pairing noted above does occur (for both the no-soliton 
and one-soliton sectors) and hence the determinant ratio is correct in this case. It 
should be said that a simple inspection of the first quantized hamiltonian H is not, 
on the face of it, sufficient to determine the pairing property since the spectrum depends 
also on the boundary conditions. It may be, however, that in the thermodynamic limit 
pairing (or its absence) may simply follow from the form of H and is insensitive to 
the precise boundary conditions; we suspect this to be so, however, we know of no 
proof of this. 

A second point we wish to note in this appendix is that 

det[ -8, + HI = Jdet[  -a: + H’]. (‘4.4) 

This holds simply because the eigenvalues of -a, are iw, where 

w ,  = (2n + l ) x / p  (A.5) 
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Thus multiplying the terms in the determinant with iw, and -iw, leads to a factor 
w i + H 2 .  This is a single factor from det[-$+ H 2 ]  and the square root allows us to 
allow U,, to cover its full range. (This elementary analysis also indicates that the ratio 
of functional determinants will be non-negative.) More generally, (A.4)  follows from 
an operator, say Q having a real (and positive) determinant. Then det[ Q ]  = m. 
Appendix B 

In this appendix we will show the equivalence of three different cut-off procedures for 
the calculation of the polyacetylene free energy for uniform systems at zero temperature. 
With some work the results of this appendix can be extended to polyacetylene with a 
soliton present. 

The uniform system consists of a half-filled conduction band of electrons. The 
occupied states have energies ranging from -uFPF to 0 (measured relative to the Fermi 
energy) and the energy bandwidth is W = 2uFpF. We shall express cut-off quantities 
in terms of W. Thus momentum integrals are bounded by IpI C w/2uF. We calculate 
the free energy of a uniform (dimerized) system of length L relative to the free energy 
of an undimerized system being given by (the limit P -+CO is implicit in what follows). 
Using in (2.4) the identity In det Tr In and employing the Schwinger 'proper time' 
integral for the logarithms [7]: In ( A / B )  = -j: ds / s  (e-'A -e-sB) we have 

1 -a',+Hi W :  

P -a,-vFa, F-Fo= --Trln ( 2 2 

Expanding the integrals in powers of Ao/ W and neglecting corrections 
O(Ao/ W)",  n > 1, gives 

Minimizing F - Fo with respect to A. results in the zero-temperature dimerization 
equation (3.1). 

Alternatively one can introduce a cut-off in the integral over frequencies; Iw/  d W / 2 ,  
leading to the same result. This is clear from the second of equations (B.1) where the 
integrand is symmetric in w and uFp.  

A third method of putting in a cut-off comes from the observation that small values 
of the proper time, s, corresponds to large energies. Consequently cutting off the small 
s part of the integral is equivalent to cutting off the large momenta or frequencies. Let 
us introduce a cut-off as follows 



Functional treatment of solitons in polyacetylene 5025 

Expanding again in powers of A,/ @ we find 

F-Fo A i  -- -- (ln($)’+y- I )  + % A i  
L 2 T V ,  2g 

where y is Euler’s constant. 

make the identification @ = e ‘I2 W / 2 .  
This leads to the same dimerization equation as found previously provided we 

Appendix C 

In this appendix we derive the determinant formula (4.8) using a theorem of scattering 
theory. Let 

d’ 
d x  

H = -7+ V(x)  

be a Hamiltonian such that limx-.*= U(x)  = a* and let 

d’ 2 Ho= -,+a. 
dx 

Now take a scattering state eigenfunction f(x,  z )  of H such that 

lim f (x ,  z )  e-lh = 1 
X‘+5  

for k’ = z - a 2  > 0. Then the general form for f (x ,  z )  at x + -CD is 

limf(x, z )  =e-‘k”A(z)+e‘k”F(z). (C.4) 
Then it can be shown that [3]  

det( H - z )  
det( Ho - z) 

= F ( z ) .  (C.5) 

For our Hamiltonian the scattering wavefunction satisfying the condition (C.3) is 

f (x ,  z) = 2jk( 1 - V2)-lk/’F(-ik - A, - ik+ A + 1 ,  -ik+ l , f (  1 - 7)) (C.6) 

where v = tanh x, k’ = z and F(a, p, y ,  z )  is the Gauss hypergeometric function. The 
asymptotic form of (C.6) for x + CD is 

sin T A  e-ikx r( - ik) r (  1 - ik) eik” 
sinh irk f (x ,  z )  + i - + 

T(-ik - A)r(-ik + A + 1) (C.7) 

from which it follows that 

T( - i k ) r (  1 - ik) 
(C.8) 

For z < 0 the analytical continuation is carried out by making the replacement k -, i 6  
and we finally obtain 

det[-d2/dx2-A(A+1) sech’x-z] T(&)r(l+&) 

- - det[ -d2/dx’ - A ( A  + 1) sech’ x - z] 
det[-d*/dx - z ]  r(-ik-A)T(-ik+A + I ) ‘  

(C.9) - - 
det[-d2/dx2 - z ]  r(&-A)r(G+A+l)‘ 
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Appendix D 

In this appendix we derive an alternative integral representation for the soliton creation 
energy to the one obtained in section 3. The form presented here makes it manifestly 
obvious that (E - E o ) / A o  has an extremum at A = 1 and may have advantages in 
numerical evaluation of this quantity. 

We use the integral representation for In T(z) [8] 

Using this in (3.17) leads to 

U 
" E - Eo -=-- {I d ~ ( u 2 - 1 ) 1 / 2 ( l n ( & ) + ~  

A0 T 

The integral involving the logarithm may be evaluated exactly and has the value -1. 
For the integral over t we write 

and use this to integrate by parts. We obtain 

Using the integral representation of the Bessel function Ko(z) [8] 

enables the U integration to be performed and leads, after a rescaling of the integration 
variable, to the alternative integral representation for (E - Eo)/ Ao: 

-- d 2-e- '-e '  ) A0 T dt  t(1 - e - ' / " )  
- - 1 - jam d t KO( t ) - ( E - E o  

As pointed out above the advantage of this representation 
differentiate with respect to A. We obtain 

- d - E-Eo -- 2 " d sinh2(t/2) 
dA( A. ) - T A ' { ~  d rKo( t ) - (  d t  sinh2( t / 2 A )  ) 

(D.6) 

appears when we 

(D.7) 

which makes it clear that there is an extremum at A = 1. A numerical evaluation of the 
second derivitive indicates that A = 1 is a minimum; as we would expect from convexity 
of the free energy. 
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